Skip to main content
Log in

Effect of laser process parameters on the dilution, microstructure, and wear behaviour of Tribaloy™ T800 cladding on AISI 316 stainless steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tribaloy™ T800, a Co-based alloy, exhibits remarkable tribological properties by virtue of its high-volume fraction of intermetallic Laves phase making it an attractive hard-facing material. Hard-facing by laser deposition results in dilution from the substrate, and thereby, the properties of the clad are altered. This paper reports the influence of processing parameters on the dilution, microstructure, and wear behaviour of Tribaloy™ T800 on AISI 316 stainless steel. A systematic set of 20 clads was deposited by varying laser power and cladding speed, keeping powder flow and spot diameter constant. While dilution decreased at lower laser powers (800 and 1000 W) with increasing cladding speed (5–20 mm s−1), at higher laser powers (1200 and 1400 W), the opposite trend was observed. The Fe intermixing from the substrate along with the cooling rate governs the volume fraction and size of the Laves phases which controls the properties of T800 clads. The clad with the least geometric dilution (5.7%) exhibits the lowest wear rate of 0.54 × 10−5 mm3 N−1 m−1, increasing to 2.88 × 10−5 mm3 N−1 m−1 as the dilution increased to 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Mann BS (2000) High-energy particle impact wear resistance of hard coatings and their application in hydroturbines. Wear 237:140–146. https://doi.org/10.1016/S0043-1648(99)00310-5

    Article  CAS  Google Scholar 

  2. Scheid A, Schreiner WH, D’Oliveira ASCM (2012) Effect of temperature on the reactivity between a CoCrMoSi alloy and 55wt% AlZn baths. Corros Sci 55:363–367. https://doi.org/10.1016/j.corsci.2011.10.040

    Article  CAS  Google Scholar 

  3. Yu ZW, Xu XL (2006) Failure analysis and metallurgical investigation of diesel engine exhaust valves. Eng Fail Anal 13:673–682. https://doi.org/10.1016/j.engfailanal.2004.10.018

    Article  CAS  Google Scholar 

  4. Schmidt RD, Ferriss DP (1975) New materials resistant to wear and corrosion to 1000°C. Wear 32:279–289. https://doi.org/10.1016/0043-1648(75)90316-6

    Article  CAS  Google Scholar 

  5. Stein F, Leineweber A (2021) Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. J Mater Sci 56:5321–5427. https://doi.org/10.1007/s10853-020-05509-2

    Article  CAS  Google Scholar 

  6. Cameron CB, Ferriss DP (1975) Tribaloy * Intermetallic Materials : New Wear- and Corrosion- Resistant Alloys. Anti-Corrosion Methods Mater 4–9

  7. Halstead A, Rawlings RD (1984) Structure and hardness of Co-Mo-Cr-Si wear resistant alloys (Tribaloys). Met Sci 18:491–500. https://doi.org/10.1179/030634584790253146

    Article  CAS  Google Scholar 

  8. Foroulis ZA (1983) The role of molybdenum as an alloy element in adhesive wear resistance. In: Specialty steels and hard materials. Pergamon, pp 277–288. https://doi.org/10.1016/B978-0-08-029358-5.50031-8

  9. Xu W (2005) The influence of chemical composition and heat treatment on microstructure and mechanical/tribological properties of cobalt-based Tribaloy alloys. Masters Dissertation Carleton University

  10. Przybylowicz J, Kusinski J (2000) Laser cladding and erosive wear of Co-Mo-Cr-Si coatings. Surf Coatings Technol 125:13–18. https://doi.org/10.1016/S0257-8972(99)00563-0

    Article  CAS  Google Scholar 

  11. Gao F, Liu R, Wu XJ (2010) Tribological behavior of T-401/tin-bronze composite coating deposited by HVOF on the bushing of planet journals. Wear 269:724–732. https://doi.org/10.1016/j.wear.2010.07.009

    Article  CAS  Google Scholar 

  12. Halstead A, Rawlings RD (1985) The fracture behaviour of two Co-Mo-Cr-Si wear resistant alloys (“Tribaloys”). J Mater Sci 20:1248–1256. https://doi.org/10.1007/BF01026320

    Article  CAS  Google Scholar 

  13. Tavakoli A, Liu R, Wu XJ (2008) Improved mechanical and tribological properties of tin-bronze journal bearing materials with newly developed tribaloy alloy additive. Mater Sci Eng A 489:389–402. https://doi.org/10.1016/j.msea.2007.12.030

    Article  CAS  Google Scholar 

  14. Yang W, jin, Zou L, Cao X ying, et al (2019) Fretting wear properties of HVOF-sprayed CoMoCrSi coatings with different spraying parameters. Surf Coatings Technol 358:994–1005. https://doi.org/10.1016/j.surfcoat.2018.12.039

    Article  CAS  Google Scholar 

  15. A. Alidokht S, Gao Y, de Castilho BCNM, et al (2022) Microstructure and mechanical properties of Tribaloy coatings deposited by high-velocity oxygen fuel. J Mater Sci 57:20056–20068. https://doi.org/10.1007/s10853-022-07843-z

    Article  CAS  Google Scholar 

  16. Cho JY, Zhang SH, Cho TY et al (2009) The processing optimization and property evaluations of HVOF Co-base alloy T800 coating. J Mater Sci 44:6348–6355. https://doi.org/10.1007/s10853-009-3875-z

    Article  CAS  Google Scholar 

  17. Testa V, Morelli S, Bolelli G et al (2021) Micromechanical behaviour and wear resistance of hybrid plasma-sprayed TiC reinforced Tribaloy-400. Surf Coatings Technol 425:127682. https://doi.org/10.1016/j.surfcoat.2021.127682

    Article  CAS  Google Scholar 

  18. Wang Y, Liu J, Kang N et al (2016) Cavitation erosion of plasma-sprayed CoMoCrSi coatings. Tribol Int 102:429–435. https://doi.org/10.1016/j.triboint.2016.06.014

    Article  CAS  Google Scholar 

  19. Prasad CD, Joladarashi S, Ramesh MR (2020) Comparative investigation of HVOF and flame sprayed CoMoCrSi coating. AIP Conf Proc 2247:050004. https://doi.org/10.1063/5.0003883

    Article  CAS  Google Scholar 

  20. Maestracci R, Sova A, Jeandin M et al (2016) Deposition of composite coatings by cold spray using stainless steel 316L, copper and Tribaloy T-700 powder mixtures. Surf Coatings Technol 287:1–8. https://doi.org/10.1016/j.surfcoat.2015.12.065

    Article  CAS  Google Scholar 

  21. Bolelli G, Cannillo V, Lusvarghi L et al (2007) Microstructural and tribological comparison of HVOF-sprayed and post-treated M-Mo-Cr-Si (M = Co, Ni) alloy coatings. Wear 263:1397–1416. https://doi.org/10.1016/j.wear.2006.12.002

    Article  CAS  Google Scholar 

  22. Kawakita J, Kuroda S, Kodama T (2003) Evaluation of through-porosity of HVOF sprayed coating. Surf Coatings Technol 166:17–23. https://doi.org/10.1016/S0257-8972(02)00719-3

    Article  CAS  Google Scholar 

  23. Khanna AS, Kumari S, Kanungo S, Gasser A (2009) Hard coatings based on thermal spray and laser cladding. Int J Refract Met Hard Mater 27:485–491. https://doi.org/10.1016/j.ijrmhm.2008.09.017

    Article  CAS  Google Scholar 

  24. Xu PQ, Gong HY, Xu GX et al (2008) Study on microstructure and properties of Ni-based alloy/Y2O3-deposited metals by laser cladding. J Mater Sci 43:1559–1567. https://doi.org/10.1007/s10853-007-2339-6

    Article  CAS  Google Scholar 

  25. Chen J, Wang S-H, Xue L (2012) On the development of microstructures and residual stresses during laser cladding and post-heat treatments. J Mater Sci 47:779–792. https://doi.org/10.1007/s10853-011-5854-4

    Article  CAS  Google Scholar 

  26. Li Z, Chai L, Tang Y et al (2023) 316L stainless steel repaired layers by weld surfacing and laser cladding on a 27SiMn steel: A comparative study of microstructures, corrosion, hardness and wear performances. J Mater Res Technol 23:2043–2053. https://doi.org/10.1016/j.jmrt.2023.01.162

    Article  CAS  Google Scholar 

  27. Lin J, Chen C, Zhang M, Wang S (2018) The effects of heat treatment on microstructure and mechanical properties of tribaloy 400 coatings deposited by laser cladding. J Mater Eng Perform 27:6339–6348. https://doi.org/10.1007/s11665-018-3762-3

    Article  CAS  Google Scholar 

  28. Ya W, Pathiraj B, Matthews DTA et al (2018) Cladding of tribaloy T400 on steel substrates using a high power Nd:YAG laser. Surf Coatings Technol 350:323–333. https://doi.org/10.1016/j.surfcoat.2018.06.069

    Article  CAS  Google Scholar 

  29. Nayak MK, Roy S, Manna I (2023) Effect of substrate surface roughness on the microstructure and properties of laser surface cladding of Tribaloy T-400 on mild steel. Surf Coatings Technol 455:129210. https://doi.org/10.1016/j.surfcoat.2022.129210

    Article  CAS  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan Q, Chai L, Yang T et al (2023) Laser-clad FeCrAl/TiC composite coating on ferrite/martensitic steel: Significant grain refinement and wear resistance enhancement induced by adding TiC. Surf Coatings Technol 456:129272. https://doi.org/10.1016/j.surfcoat.2023.129272

    Article  CAS  Google Scholar 

  32. Han Q, Gu Y, Gu H et al (2021) Laser powder bed fusion of WC-reinforced Hastelloy-X composite: microstructure and mechanical properties. J Mater Sci 56:1768–1782. https://doi.org/10.1007/s10853-020-05327-6

    Article  CAS  Google Scholar 

  33. Renz A, Prakash B, Hardell J, Lehmann O (2018) High-temperature sliding wear behaviour of Stellite®12 and Tribaloy®T400. Wear 402–403:148–159. https://doi.org/10.1016/j.wear.2018.02.013

    Article  CAS  Google Scholar 

  34. Fu F, Zhang Y, Chang G, Dai J (2016) Analysis on the physical mechanism of laser cladding crack and its influence factors. Optik (Stuttg) 127:200–202. https://doi.org/10.1016/j.ijleo.2015.10.043

    Article  CAS  Google Scholar 

  35. Shi B, Li T, Wang D et al (2021) Investigation on crack behavior of Ni60A alloy coating produced by coaxial laser cladding. J Mater Sci 56:13323–13336. https://doi.org/10.1007/s10853-021-06108-5

    Article  CAS  Google Scholar 

  36. Malikongwa K, Tlotleng M, Olakanmi EO (2021) Optimisation of the wear resistance properties of laser cladded T-800 coatings. Int J Adv Manuf Technol 114:481–496. https://doi.org/10.1007/s00170-021-06718-y

    Article  Google Scholar 

  37. Keshavarz MK, Gontcharov A, Lowden P, Brochu M (2020) Properties of CM64 and tribaloy T-800 welds for hard-facing of turbine blades. J Manuf Sci Eng Trans ASME 142:1–8. https://doi.org/10.1115/1.4047142

    Article  Google Scholar 

  38. Yellup JM (1995) Laser cladding using the powder blowing technique. Surf Coatings Technol 71:121–128. https://doi.org/10.1016/0257-8972(94)01010-G

    Article  CAS  Google Scholar 

  39. Hemmati I, Ocelík V, De Hosson JTM (2012) Dilution effects in laser cladding of Ni-Cr-B-Si-C hardfacing alloys. Mater Lett 84:69–72. https://doi.org/10.1016/j.matlet.2012.06.054

    Article  CAS  Google Scholar 

  40. Toyserkani E, Khajepour A, Corbin SF (2004) Laser cladding, 1st edn. CRC Press. https://doi.org/10.1201/9781420039177

    Book  Google Scholar 

  41. Fathi A, Toyserkani E, Khajepour A, Durali M (2006) Prediction of melt pool depth and dilution in laser powder deposition. J Phys D Appl Phys 39:2613–2623. https://doi.org/10.1088/0022-3727/39/12/022

    Article  CAS  Google Scholar 

  42. Kim H, Grandhi M, Liu Z et al (2022) Interface bonding behavior and failure mechanism of joining Tribaloy T-800/AISI 4140 via laser engineered net shaping. Opt Laser Technol 156:108620. https://doi.org/10.1016/j.optlastec.2022.108620

    Article  CAS  Google Scholar 

  43. Halstead A, Rawlings RD (1985) The effect of iron additions on the microstructure and properties of the “Tribaloy” Co-Mo-Cr-Si wear resistant alloys. J Mater Sci 20:1693–1704. https://doi.org/10.1007/BF00555273

    Article  CAS  Google Scholar 

  44. Song B, Yu T, Jiang X et al (2021) Development mechanism and solidification morphology of molten pool generated by laser cladding. Int J Therm Sci 159:106579. https://doi.org/10.1016/j.ijthermalsci.2020.106579

    Article  Google Scholar 

  45. Kou S (2003) Welding Metallurgy. MRS Bull 28:674–675. https://doi.org/10.1557/mrs2003.197

    Article  Google Scholar 

  46. Zhang YD, Yang ZG, Zhang C, Lan H (2008) Oxidation behavior of tribaloy T-800 alloy at 800 and 1,000 °c. Oxid Met 70:229–239. https://doi.org/10.1007/s11085-008-9117-y

    Article  CAS  Google Scholar 

  47. Yao MX, Wu JBC, Liu R (2005) Microstructural characteristics and corrosion resistance in molten Zn-Al bath of Co-Mo-Cr-Si alloys. Mater Sci Eng A 407:299–305. https://doi.org/10.1016/j.msea.2005.07.054

    Article  CAS  Google Scholar 

  48. Zhang P-X, Yan H, Sun Y-H (2021) Microstructure, microhardness and corrosion resistance of laser cladding Al2O3@Ni composite coating on 304 stainless steel. J Mater Sci 56:8209–8224. https://doi.org/10.1007/s10853-020-05741-w

    Article  CAS  Google Scholar 

  49. Majumdar JD, Li L (2009) Studies on direct laser cladding of SiC dispersed AISI 316L stainless steel. Metall Mater Trans A 40:3001–3008. https://doi.org/10.1007/s11661-009-0018-8

    Article  CAS  Google Scholar 

  50. Shao J, Yu G, He X et al (2019) Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt Laser Technol 119:105662. https://doi.org/10.1016/j.optlastec.2019.105662

    Article  CAS  Google Scholar 

  51. Nascimento EM, Amaral LM, D’Oliveira ASCM (2017) Characterization and wear of oxides formed on CoCrMoSi alloy coatings. Surf Coatings Technol 332:408–413. https://doi.org/10.1016/j.surfcoat.2017.07.081

    Article  CAS  Google Scholar 

  52. Wood PD, Evans HE, Ponton CB (2010) Investigation into the wear behaviour of Tribaloy 400C during rotation as an unlubricated bearing at 600°C. Wear 269:763–769. https://doi.org/10.1016/j.wear.2010.08.003

    Article  CAS  Google Scholar 

  53. Gates JD (1998) Two-body and three-body abrasion: a critical discussion. Wear 214:139–146. https://doi.org/10.1016/S0043-1648(97)00188-9

    Article  CAS  Google Scholar 

  54. Guilemany JM, Miguel JM, Vizcaino S, Climent F (2001) Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying. Surf Coatings Technol 140:141–146. https://doi.org/10.1016/S0257-8972(01)01033-7

    Article  CAS  Google Scholar 

  55. Misra A, Finnie I (1983) An experimental study of three-body abrasive wear. Wear 85:57–68. https://doi.org/10.1016/0043-1648(83)90335-6

    Article  Google Scholar 

  56. Shen J, Chai L, Wang H et al (2023) Surface microstructures and properties of oxide-reinforced FeCrAl matrix composite coatings prepared by laser cladding on a ferritic-martensitic steel. J Nucl Mater 578:154345. https://doi.org/10.1016/j.jnucmat.2023.154345

    Article  CAS  Google Scholar 

  57. Fang L, Kong XL, Su JY, Zhou QD (1993) Movement patterns of abrasive particles in three-body abrasion. Wear 162–164:782–789. https://doi.org/10.1016/0043-1648(93)90079-2

    Article  Google Scholar 

  58. da Conceição L, D’Oliveira ASCM (2016) The effect of oxidation on the tribolayer and sliding wear of a Co-based coating. Surf Coatings Technol 288:69–78. https://doi.org/10.1016/j.surfcoat.2016.01.013

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I.M would like to acknowledge partial financial support from DST sponsored projects ‘JCP’ and ‘DGL’, ISRO sponsored project ‘ONC’, and Ministry of Education supported SPARC projects LSL_SKI at IIT Kharagpur. The authors want to thank Deloro Wear Solutions GmbH in Koblenz, Germany, for providing the TribaloyTM T800 powders that were used in this study. The authors greatly thank the Science and Engineering Research Board (SERB), India, for the financial support via grant no. CRG/2023/000106 and CRG/2023/0003537. The authors would like to acknowledge the Henry Royce Institute for Advanced Materials, founded through EPSRC grants EP/R00661X/1, EP/S019367/1, EP/P025021/1 and EP/P025498/1. Shubhra Nandi acknowledges the funding of IIT Kharagpur-University of Manchester Joint Doctoral Program scholarship.

Author information

Authors and Affiliations

Authors

Contributions

SKN contributed to Conceptualization, Methodology, Investigation, Formal analysis, and Writing—original draft. AR contributed to Investigation, Formal analysis. PJW contributed to Supervision, Writing—review & editing, and Funding acquisition. AM contributed to Supervision. SR contributed to Conceptualisation, Supervision, Project administration, Resources, Writing—original draft, and Writing—review & editing. IM contributed to Conceptualisation, Funding acquisition, Supervision, Resources, and Writing—review & editing.

Corresponding author

Correspondence to Indranil Manna.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that could have appeared to influence the study for this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6068 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S.K., Ajithkannan, R., Withers, P.J. et al. Effect of laser process parameters on the dilution, microstructure, and wear behaviour of Tribaloy™ T800 cladding on AISI 316 stainless steel. J Mater Sci 59, 9042–9058 (2024). https://doi.org/10.1007/s10853-024-09593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09593-6

Navigation