Skip to main content
Log in

Studies on Direct Laser Cladding of SiC Dispersed AISI 316L Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, attempts have been made to develop SiC dispersed (5 and 20 wt pct) AISI 316L stainless steel matrix composite by direct laser cladding with a high power diode laser. Direct laser cladding has been carried out by melting the powder blends of AISI 316L stainless steel and SiC (5 and 20 wt pct) and, subsequently, depositing it on mild steel (0.15 pct C steel) in a layer by layer fashion to develop a coupon of 100 mm2 × 10 mm dimension. A continuous, defect-free (microcracks and micro- or macroporosities), and homogeneous microstructure is formed, which consists of a dispersion of partially dissolved SiC (leading to formation of very low fraction of Cr3C2 and Fe2Si) in grain-refined austenite. The microhardness of the clad layer increases from 155 VHN to 250 to 340 VHN (for 5 wt pct SiC dispersed) and 450 to 825 VHN (for 20 wt pct SiC dispersed) as compared to 155 VHN of commercially available AISI 316L stainless steel. The corrosion rate in 3.56 wt pct NaCl solution is significantly reduced in 5 wt pct SiC dispersed steel; however, 20 wt pct SiC dispersed steel showed a similar behavior as the commercially available AISI 316L stainless steel. The processing zone for the development of a defect-free microstructure with improved properties has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. C.J. Novak: in Handbook of Stainless Steels, D. Peckner and I.M. Bernstein, eds., McGraw-Hill, New York, NY, 1977, p. 1.

    Google Scholar 

  2. An Introduction to Metal Matrix Composites, T.W. Clyne and P.J. Withers, eds., Cambridge University Press, Cambridge, United Kingdom, 1993.

  3. Laser Material Processing, W.M. Steen, ed., Springer Verlag, New York, NY, 1991, p. 1.

  4. F.T. Cheng, C.T. Kwok, and H.C. Man: Surf. Coat. Technol., 2001, vol. 139, pp. 14–24.

    Article  CAS  Google Scholar 

  5. G. Thawari, G. Sundarararjan, and S.V. Joshi: Thin Solid Films, 2003, vol. 423, pp. 41–53.

    Article  CAS  ADS  Google Scholar 

  6. A. Woldan, J. Kusiński, and E. Tasak: Mater. Chem. Phys., 2003, vol. 81 pp. 507-509.

    Article  CAS  Google Scholar 

  7. S. Buytoz and M. Ulutan: Surf. Coat. Technol., 2006, vol. 200 pp. 3698–3734.

    Article  CAS  Google Scholar 

  8. Q. Li, G.M. Song, Y.Z. Zhang, T.C. Lei, and W.Z. Chen: Wear, 2003, vol. 254 pp. 222–29.

    Article  CAS  Google Scholar 

  9. J. Dutta Majumdar, B. Ramesh Chandra, A.K. Nath, and I. Manna: Phys. Status Solidi (a), 2006, vol. 203, pp. 2260–65.

    Article  CAS  ADS  Google Scholar 

  10. C. Tassin, F. Laroudie, M. Pons, and L. Lelait: Surf. Coat. Technol., 1996, vol. 80, pp. 207–10.

    Article  CAS  Google Scholar 

  11. A.J. Pinkerton and L. Li: Appl. Surf. Sci., 2003, vol. 208, pp. 405–10.

    Article  ADS  Google Scholar 

  12. F.G. Arcella and F.H. Froes: J. Met., 2000, vol. 52, pp. 28–30.

    CAS  Google Scholar 

  13. D. Srivastava, I.T.H. Chang, and M.H. Loretto: Intermetallics, 2001, vol. 9 pp. 1003–13.

    Article  CAS  Google Scholar 

  14. J. Dutta Majumdar, A. Pinkerton, Z. Liu, I. Manna, and L. Li: Appl. Surf. Sci., 2005, vol. 247, pp. 320–27.

    Article  CAS  ADS  Google Scholar 

  15. J. Dutta Majumdar, A. Pinkerton, Z. Liu, I. Manna, and L. Li: Appl. Surf. Sci., 2005, vol. 247, pp. 373–77.

    Article  CAS  ADS  Google Scholar 

  16. F. Wang, J. Mei, H. Jiang, and X. Wu: Mater. Sci. Eng., 2007, vols. A445–A446, pp. 461–66.

    Google Scholar 

  17. “Standard Recommended Practice for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion,” Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1985, p. G61.

  18. S. Kalogeropoulou, L. Baud, and N. Eustathopoulos: Acta Metall. Mater., 1995, vol. 43, pp. 907–12.

    Article  CAS  Google Scholar 

  19. T. Iseki: in Silicon Carbide—I, Somiya and Y. Inomata, eds., Elsevier Science, New York, NY, 1991, p. 247.

  20. J. Lacaze and B. Sundman: Metall. Trans. A, 1991, vol. 22A, pp. 2211–23.

    CAS  ADS  Google Scholar 

  21. G. Abbas and U. Ghazanfar: Wear, 2005, vol. 258, pp. 258–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Department of Science and Technology (Boyscast Scheme, N. Delhi), Council of Scientific and Industrial Research (N. Delhi), and Board of Research on Nuclear Science (Bombay) for the present study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Dutta Majumdar.

Additional information

Manuscript submitted February 28, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, J.D., Li, L. Studies on Direct Laser Cladding of SiC Dispersed AISI 316L Stainless Steel. Metall Mater Trans A 40, 3001–3008 (2009). https://doi.org/10.1007/s11661-009-0018-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0018-8

Keywords

Navigation