Skip to main content
Log in

Microstructure, microhardness and corrosion resistance of laser cladding Al2O3@Ni composite coating on 304 stainless steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure, microhardness and corrosion resistance of laser cladding Al2O3@Ni composite coating were investigated. The Al2O3@Ni core–shell metal-ceramic powders synthesized via electroless plating method were used as laser cladding materials. According to the results of scanning electron microscopy and energy dispersive spectrometer, the microstructure of the Al2O3@Ni composite coating gradually transitioned from columnar crystal to cellular crystal and equiaxed crystal along the bottom to the surface. Furthermore, the Ni particles and Al2O3 particles separated when laser heating, then formed Ni metallurgical bonding layer and Al2O3 ceramic layer, respectively. The microhardness of Al2O3@Ni composite coating was up to 917.0 HV, which was about 5.7 times that of 304 stainless steel. In addition, immersion and electrochemical tests revealed that Al2O3@Ni composite coating exhibited excellent corrosion resistance compared with 304 stainless steel. The corrosion current density of the Al2O3@Ni composite coating (36.493 μA cm−2) was about 67.0% lower than that of 304 stainless steel (110.592 μA cm−2). Meanwhile, the corrosion mechanism of Al2O3@Ni composite coating was revealed. Dense Al2O3@Ni composite coating can inhibit the penetration of Cl and H+, making the corrosion reaction difficult to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Jiménez-Come MJ, Turias IJ, Trujillo FJ (2014) An automatic pitting corrosion detection approach for 316 L stainless steel. Mater Des 56:642–648. https://doi.org/10.1016/j.matdes.2013.11.045

    Article  CAS  Google Scholar 

  2. Hu CL, Xia S, Li H, Liu TG, Zhou BX, Chen WJ, Wang N (2011) Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control. Corros Sci 53:1880–1886. https://doi.org/10.1016/j.corsci.2011.02.005

    Article  CAS  Google Scholar 

  3. Xing XG, Wang HF, Lu PN, Han ZJ (2016) Influence of rare earths on electrochemical corrosion and wear resistance of RE–Cr/Ti pack coatings on cemented 304 stainless steel. Surf Coat Technol 291:151–160. https://doi.org/10.1016/j.surfcoat.2016.02.001

    Article  CAS  Google Scholar 

  4. Kim J, Sankara Narayanan TSN, Park HW (2020) Reducing the pitting susceptibility of AISI 304 stainless steel using a hybrid treatment of high-power diode laser and large pulsed electron beam irradiation. Surf Coat Technol 381:125124. https://doi.org/10.1016/j.surfcoat.2019.125124

    Article  CAS  Google Scholar 

  5. Albrimi YA, Addi AA, Douch J, Souto RM, Hamdani M (2015) Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions. Corros Sci 90:522–528. https://doi.org/10.1016/j.corsci.2014.10.023

    Article  CAS  Google Scholar 

  6. Sun Y (2013) Sliding wear behaviour of surfacemechanical attrition treated AISI 304 stainless steel. Tribol Int 57:67–75. https://doi.org/10.1016/j.triboint.2012.07.015

    Article  CAS  Google Scholar 

  7. Tsujikawa M, Noguchi S, Yamauchi N, Ueda N, Sone T (2007) Effect of molybdenum on hardness of low-temperature plasma carburized austenitic stainless steel. Surf Coat Technol 201:5102–5107. https://doi.org/10.1016/j.surfcoat.2006.07.127

    Article  CAS  Google Scholar 

  8. Stewart JA, Spearot DE (2017) Phase-field simulations of microstructure evolution during physical vapor deposition of single-phase thin films. Comput Mater Sci 131:170–177. https://doi.org/10.1016/j.commatsci.2017.01.034

    Article  CAS  Google Scholar 

  9. Chaitoglou S, Bertran E (2017) Effect of temperature on graphene grown by chemical vapor deposition. J Mater Sci 52:8348–8356. https://doi.org/10.1007/s10853-017-1054-1

    Article  CAS  Google Scholar 

  10. MacDonald D, Fernandez R, Delloro F, Jodoin B (2017) Cold spraying of arm strong process titanium powder for additive manufacturing. J Therm Spray Technol 26:598–609. https://doi.org/10.1007/s11666-016-0489-2

    Article  CAS  Google Scholar 

  11. Hu M, Tang JC, Chen XG, Ye N, Zhao XY, Xu MM (2020) Microstructure and properties of WC-12Co composite coatings prepared by laser cladding. Trans Nonferr Metal Soc 30:1017–1030. https://doi.org/10.1016/S1003-6326(20)65273-6

    Article  CAS  Google Scholar 

  12. Zhang MY, Li M, Wang SF, Chi J, Ren LS, Fang M, Zhou C (2020) Enhanced wear resistance and new insight into microstructure evolution of in situ (Ti, Nb) C reinforced 316 L stainless steel matrix prepared via laser cladding. Opt Laser Eng 128:106043. https://doi.org/10.1016/j.optlaseng.2020.106043

    Article  Google Scholar 

  13. Aguilar-Hurtado JY, Vargas-Uscategui A, Paredes-Gil K, Palma-Hillerns R, Tobar MJ, Amado JM (2020) Boron addition in a non-equiatomic Fe50Mn30Co10Cr10 alloy manufactured by laser cladding: microstructure and wear abrasive resistance. Appl Surf Sci 515:146084. https://doi.org/10.1016/j.apsusc.2020.146084

    Article  CAS  Google Scholar 

  14. Dong TS, Liu M, Feng Y, Li GL, Li XB (2020) Microstructure and properties of a wear resistant Al–25Si–4Cu–1 Mg coating prepared by supersonic plasma spraying. Int J Min Met Mater 27:1287–1294. https://doi.org/10.1007/s12613-019-1950-2

    Article  CAS  Google Scholar 

  15. Liu CS, Wei DD, Xu RS, Mai YJ, Zhang LY, Jie XH (2020) Electroplated Co-Ni/WS2 composite coating with excellent tribological and anticorrosion performance. Tribol Trans. https://doi.org/10.1080/10402004.2020.1759742

    Article  Google Scholar 

  16. Zhou SF, Dai XQ (2010) Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings. Appl Surf Sci 256:4708–4714. https://doi.org/10.1016/j.apsusc.2010.02.078

    Article  CAS  Google Scholar 

  17. Cao YB, Ren HT, Hu CS, Meng QX, Liu Q (2015) In-situ formation behavior of NbC-reinforced Fe-based laser cladding coatings. Mater Lett 147:61–63. https://doi.org/10.1016/j.matlet.2015.02.026

    Article  CAS  Google Scholar 

  18. Wang CL, Gao Y, Wang R, Wei DQ, Cai M, Fu YK (2018) Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys. J Alloy Compd 740:1099–1107. https://doi.org/10.1016/j.jallcom.2018.01.061

    Article  CAS  Google Scholar 

  19. Tanaike O, Noguchi Y, Hayashi S, Sugai I, Niwa E, Iijima T, Ebina T (2020) Study on the cross-sectional microstructure of a thin ceramic coating on stainless steel surface fabricated by the application and calcination of an aqueous clay mineral paste. Appl Clay Sci 193:105665. https://doi.org/10.1016/j.clay.2020.105665

    Article  CAS  Google Scholar 

  20. Xu CH, Feng YM, Zhang RB, Zhao SK, Xiao X, Yu GT (2009) Wear behavior of Al2O3/Ti(C, N)/SiC new ceramic tool material when machining tool steel and cast iron. J Mater Process Technol 209:4633–4637. https://doi.org/10.1016/j.jmatprotec.2008.10.017

    Article  CAS  Google Scholar 

  21. Vlasova M, Kakazey M, Hernandez AC, Aguilar PAM, Tapia RG, Mel’nikov IV, Petrovsky VN (2019) Surface changes in Al2O3-base composite ceramics under action of laser treatment. Ceram Int 45:5454–5466. https://doi.org/10.1016/j.ceramint.2018.11.249

    Article  CAS  Google Scholar 

  22. Li CG, Yu SZ, Zhang YF, Zhang PL, Yan H, Lu QH, Li WG, Wang Y (2013) Microstructure evolution of laser remelted Al2O3-13wt.%TiO2 coatings. J Alloy Compd 576:187–194. https://doi.org/10.1016/j.jallcom.2013.04.100

    Article  CAS  Google Scholar 

  23. Li ZL, Wei MM, Xiao K, Bai ZH, Xue W, Dong CF, Wei D, Li XG (2019) Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding. Ceram Int 45:115–121. https://doi.org/10.1016/j.ceramint.2018.09.140

    Article  CAS  Google Scholar 

  24. Li CG, Zeng M, Liu CM, Wang FF, Guo YJ, Wang JQ, Yang Y, Li WG, Wang Y (2020) Microstructure and tribological behavior of laser cladding TiAlSi composite coatings reinforced by alumina–titania ceramics on Ti–6Al–4 V alloys. Mater Chem Phys 240:122271. https://doi.org/10.1016/j.matchemphys.2019.122271

    Article  CAS  Google Scholar 

  25. Yue TM, Huang KJ, Man HC (2007) In situ laser cladding of Al2O3 bearing coatings on aluminum alloy 7075 for improvement of wear resistance. Surf Eng 23:142–146. https://doi.org/10.1179/174329407X169449

    Article  CAS  Google Scholar 

  26. Wang WZ, Feng SS, Li ZM, Chen ZG, Zhao TY (2020) Microstructure and properties of micro-arcoxidation ceramic films on AerMet100 steel. J Mater Res Technol 9:6014–6027. https://doi.org/10.1016/j.jmrt.2020.04.005

    Article  CAS  Google Scholar 

  27. He X, Song RG, Kong DJ (2019) Microstructure and corrosion behaviour of laser-cladding Al-Ni-TiC-CeO2composite coatings on S355 offshore steel. J Alloy Compd 770:771–783. https://doi.org/10.1016/j.jallcom.2018.08.058

    Article  CAS  Google Scholar 

  28. Zhang PX, Pang YB, Yu MW (2019) Effects of WC particle types on the microstructures and properties of WC-reinforced Ni60 composite coatings produced by laser cladding. Metals-Basel 9:583. https://doi.org/10.3390/met9050583

    Article  CAS  Google Scholar 

  29. Xiong LL, Zheng HZ, Yu P, Li GF, Chen Z, Zhang B (2015) Laser-clad YSZ@Ni (core–shell nanoparticle) composites coatings. Ceram Int 41:13850–13854. https://doi.org/10.1016/j.ceramint.2015.06.094

    Article  CAS  Google Scholar 

  30. Uysal M, Karslioğlu R, Alp A, Akbulut H (2013) The preparation of core–shell Al2O3/Ni composite powders by electroless plating. Ceram Int 39:5485–5493. https://doi.org/10.1016/j.ceramint.2012.12.060

    Article  CAS  Google Scholar 

  31. Hu GF, Yang Y, Qi Kang LuX, Li JD (2020) Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters. Trans Indian Inst Metals 73:2623–2634. https://doi.org/10.1007/s12666-020-02065-w

    Article  CAS  Google Scholar 

  32. Xiang K, Chai LJ, Wang YY, Wang H, Guo N, Ma YL, Murty KL (2020) Microstructural characteristics and hardness of CoNiTi medium-entropy alloy coating on pure Ti substrate prepared by pulsed laser cladding. J Alloy Compd 849:156704. https://doi.org/10.1016/j.jallcom.2020.156704

    Article  CAS  Google Scholar 

  33. Sui XM, Lu J, Hu J, Zhang WP (2020) Effect of specific energy on microstructure and properties of laser cladded TiN/Ti3AlN-Ti3Al composite coating. Opt Laser Technol 131:106428. https://doi.org/10.1016/j.optlastec.2020.106428

    Article  CAS  Google Scholar 

  34. Huang Y (2011) Characterization of dilution action in laser-induction hybrid cladding. Opt Laser Technol 43:965–973. https://doi.org/10.1016/j.optlastec.2010.12.005

    Article  CAS  Google Scholar 

  35. Gao XS, Tian ZJ, Liu ZD, Shen LD (2012) Interface characteristics of Al2O3-13%TiO2 ceramic coatings prepared by laser cladding. Trans Nonferr Met Soc China 22:2498–2503. https://doi.org/10.1016/S1003-6326(11)61491-X

    Article  CAS  Google Scholar 

  36. Xu P, Lin CX, Zhou CY, Yi XP (2014) Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings. Surf Coat Technol 238:9–14. https://doi.org/10.1016/j.surfcoat.2013.10.028

    Article  CAS  Google Scholar 

  37. Lin X, Yue TM, Yang HO, Huang WD (2007) Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy. Metall Mater Trans A 38:127–137. https://doi.org/10.1007/s11661-006-9021-5

    Article  CAS  Google Scholar 

  38. Fan L, Chen HY, Dong YH, Dong LH, Yin YS (2018) Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel. Int J Min Met Mater 25:716–728. https://doi.org/10.1007/s12613-018-1619-2

    Article  CAS  Google Scholar 

  39. Wang Q, Chen FQ, Zhang L, Li JD, Zhang JW (2020) Microstructure evolution and high temperature corrosion behavior of FeCrBSi coatings prepared by laser cladding. Ceram Int 46:17233–17242. https://doi.org/10.1016/j.ceramint.2020.04.010

    Article  CAS  Google Scholar 

  40. Krämer M, Schilling M, Eifler R, Hering B, Reifenrath J, Besdo S, Windhagen H, Willbold E, Weizbauer A (2016) Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system. Mater Sci Eng C Mater Biol Appl 59:129–135. https://doi.org/10.1016/j.msec.2015.10.006

    Article  CAS  Google Scholar 

  41. Zou YC, Yan H, Hu Z, Ran QW (2020) Effect of (Pr + Ce) addition and T6 heat treatment on microhardness and corrosion of AlSi5Cu1Mg alloy. Mater Res Express 7:026526. https://doi.org/10.1088/2053-1591/ab6fa7

    Article  CAS  Google Scholar 

  42. Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20:289–305. https://doi.org/10.1007/BF02368532

    Article  CAS  Google Scholar 

  43. Sato N (1971) A theory for breakdown of anodic oxide films on metals. Electrochim Acta 16:1683–1692. https://doi.org/10.1016/0013-4686(71)85079-X

    Article  CAS  Google Scholar 

  44. Uhlig HH (1950) Adsorbed and reaction-produce films on metals. J Electrochem Soc 97:215C–220C. https://doi.org/10.1149/1.2777892

    Article  Google Scholar 

  45. Liu SS, Chen HY, Zhao X, Fan L, Guo XM, Yin YS (2019) Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution. J Iron Steel Res Int 26:191–199. https://doi.org/10.1007/s42243-019-00240-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the national natural science foundation of China (No. 51965040), and the Natural Science Foundation of Jiangxi Province (No. 20181BAB206026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Balloy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, PX., Yan, H. & Sun, YH. Microstructure, microhardness and corrosion resistance of laser cladding Al2O3@Ni composite coating on 304 stainless steel. J Mater Sci 56, 8209–8224 (2021). https://doi.org/10.1007/s10853-020-05741-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05741-w

Navigation