Skip to main content
Log in

Understanding and designing metal matrix nanocomposites with high electrical conductivity: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal matrix nanocomposites (MMNCs) are gaining more and more interest because matrices and nanophases with heterogeneous characteristics could combine to provide unprecedented properties. Given the high concentration of free electrons in metallic systems, electrical conductivity is one of the most crucial design criteria in selecting suitable MMNCs. However, due to the intrinsic complexity of MMNC systems (e.g., changed interfacial characteristics), reliable and accurate determination of electrical conductivity in MMNCs faces a considerable challenge. Notably, there lacks fundamental guidance with suitable theories and models for MMNCs’ electrical conductivity. To address these issues and provide a clear understanding of electrical properties in MMNCs, this review intends to provide a comprehensive angle to explain, design, and analyze their electrical properties, electronic features, and electron behavior after their 20-year prosperous development. First, the review connects theories, effects of various engineering factors, and electrical conductivity data in the representative systems to provide an omni-spectrum insight into MMNCs’ electrical performance. Following this discussion, the generic trend of electrical conductivity in MMNCs has been clarified for the first time, and the future focus and directions of MMNCs’ electrical behavior study have been proposed. Generally speaking, this review will mitigate the current inconsistencies in MMNCs’ electrical conductivity research and help open up new chances of achieving and extending electrical and other essential functional applications with MMNCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(adapted from Ref. [8])

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Pan S (2021) Fundamental study of nanoparticle effects on functional properties of metals. Dissertation, UCLA

  2. Javadi A, Pan S, Cao C, Li X (2021) High Strength and high electrical conductivity Al nanocomposites for DC transmission cable applications. J Compos Sci 5(7):172. https://doi.org/10.3390/jcs5070172

    Article  CAS  Google Scholar 

  3. Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528(7583):539–543. https://doi.org/10.1038/nature16445

    Article  CAS  Google Scholar 

  4. Pan S, Sokoluk M, Cao C, Guan Z, Li X (2019) Facile fabrication and enhanced properties of Cu-40 wt% Zn/WC nanocomposite. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.01.022

    Article  Google Scholar 

  5. Zhang Z, Chen DL (2006) Consideration of orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54(7):1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017

    Article  CAS  Google Scholar 

  6. Zhang Z, Chen DL (2008) Contribution of orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A 483–484:148–152. https://doi.org/10.1016/j.msea.2006.10.184

    Article  CAS  Google Scholar 

  7. Pan S, Guan Z, Yao G, Cao C, Li X (2019) Study on electrical behaviour of copper and its alloys containing dispersed nanoparticles. Curr Appl Phys. https://doi.org/10.1016/j.cap.2019.01.016

    Article  Google Scholar 

  8. Pan S, Yuan J, Zhang P, Sokoluk M, Yao G, Li X (2020) Effect of electron concentration on electrical conductivity in in situ Al-TiB2 nanocomposites. Appl Phys Lett 116(1):014102. https://doi.org/10.1063/1.5129817

    Article  CAS  Google Scholar 

  9. Yang M, Weng L, Zhu H, Fan T, Zhang D (2017) Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon 118:250–260. https://doi.org/10.1016/j.carbon.2017.03.055

    Article  CAS  Google Scholar 

  10. Hou JP, Li R, Wang Q, Yu HY, Zhang ZJ, Chen QY, Ma H, Wu XM, Li XW, Zhang ZF (2019) Three principles for preparing Al wire with high strength and high electrical conductivity. J Mater Sci Technol 35(5):742–751. https://doi.org/10.1016/j.jmst.2018.11.013

    Article  Google Scholar 

  11. Huang B, Hishinuma Y, Noto H, Muroga T (2019) Mechanochemical processing of Cu-Y2O3 alloy by MA-HIP for heat sink materials application. Fusion Eng Des 140:33–40. https://doi.org/10.1016/j.fusengdes.2019.01.133

    Article  CAS  Google Scholar 

  12. Khobragade N, Sikdar K, Kumar B, Bera S, Roy D (2019) Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J Alloys Compd 776:123–132. https://doi.org/10.1016/j.jallcom.2018.10.139

    Article  CAS  Google Scholar 

  13. Wang F, Li Y, Wang X, Koizumi Y, Kenta Y, Chiba A (2016) In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling. J Alloys Compd 657:122–132. https://doi.org/10.1016/j.jallcom.2015.10.061

    Article  CAS  Google Scholar 

  14. Pan S, Zheng T, Yao G, Chi Y, De Rosa I, Li X (2022) High-strength and high-conductivity in situ Cu–TiB2 nanocomposites. Mater Sci Eng A 831:141952. https://doi.org/10.1016/j.msea.2021.141952

    Article  CAS  Google Scholar 

  15. Yao G, Cao C, Pan S, Lin T-C, Sokoluk M, Li X (2018) High-performance copper reinforced with dispersed nanoparticles. J Mater Sci. https://doi.org/10.1007/s10853-018-3152-0

    Article  Google Scholar 

  16. Williams WS (1999) Electrical properties of hard materials. Int J Refract Met Hard Mater 17(1):21–26. https://doi.org/10.1016/S0263-4368(99)00005-0

    Article  CAS  Google Scholar 

  17. Zhukov IA, Kozulin AA, Khrustalyov AP, Matveev AE, Platov VV, Vorozhtsov AB, Zhukova TV, Promakhov VV (2019) The impact of particle reinforcement with Al2O3, TiB2, and TiC and severe plastic deformation treatment on the combination of strength and electrical conductivity of pure aluminum. Metals 9(1):65. https://doi.org/10.3390/met9010065

    Article  CAS  Google Scholar 

  18. Akhtar F, Askari SJ, Shah KA, Du X, Guo S (2009) Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Mater Charact 60(4):327–336. https://doi.org/10.1016/j.matchar.2008.09.014

    Article  CAS  Google Scholar 

  19. Genova V, Gozzi D, Latini A (2015) High-temperature resistivity of aluminum-carbon nanotube composites. J Mater Sci 50(21):7087–7096. https://doi.org/10.1007/s10853-015-9263-y

    Article  CAS  Google Scholar 

  20. Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, Shi J (2017) Superparamagnetic enhancement of thermoelectric performance. Nature 549(7671):247–251. https://doi.org/10.1038/nature23667

    Article  CAS  Google Scholar 

  21. Chang S-Y, Chen C-F, Lin S-J, Kattamis TZ (2003) Electrical resistivity of metal matrix composites. Acta Mater 51(20):6291–6302. https://doi.org/10.1016/S1359-6454(03)00462-2

    Article  CAS  Google Scholar 

  22. Mondal MK, Biswas K, Maity J (2014) Electrical conductivity of a novel cast 6351 Al–Al4SiC4 in situ composite. J Mater Sci 49(7):2894–2903. https://doi.org/10.1007/s10853-013-7997-y

    Article  CAS  Google Scholar 

  23. Wang Y, Weng GJ (2018) Electrical conductivity of carbon nanotube- and graphene-based nanocomposites. In: Meguid SA, Weng GJ (eds) Micromechanics and nanomechanics of composite solids. Springer International Publishing, Cham, pp 123–156

    Chapter  Google Scholar 

  24. Tian L, Anderson I, Riedemann T, Russell A (2014) Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Mater 77:151–161. https://doi.org/10.1016/j.actamat.2014.06.013

    Article  CAS  Google Scholar 

  25. Nai SML, Wei J, Gupta M (2008) Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J Electron Mater 37(4):515–522. https://doi.org/10.1007/s11664-008-0379-6

    Article  CAS  Google Scholar 

  26. Zhang S, Kang H, Li R, Zou C, Guo E, Chen Z, Wang T (2019) Microstructure evolution, electrical conductivity and mechanical properties of dual-scale Cu5Zr/ZrB2 particulate reinforced copper matrix composites. Mater Sci Eng A 762:138108. https://doi.org/10.1016/j.msea.2019.138108

    Article  CAS  Google Scholar 

  27. Basinski ZS, Dugdale JS, Howie A (1963) The electrical resistivity of dislocations. Philos Mag A J Theor Exp Appl Phys 8(96):1989–1997. https://doi.org/10.1080/14786436308209092

    Article  CAS  Google Scholar 

  28. Qian LH, Lu QH, Kong WJ, Lu K (2004) Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu. Scr Mater 50(11):1407–1411. https://doi.org/10.1016/j.scriptamat.2004.02.026

    Article  CAS  Google Scholar 

  29. Zeng W, Xie J, Zhou D, Fu Z, Zhang D, Lavernia EJ (2018) Bulk Cu-NbC nanocomposites with high strength and high electrical conductivity. J Alloys Compd 745:55–62. https://doi.org/10.1016/j.jallcom.2018.02.215

    Article  CAS  Google Scholar 

  30. Bowler N, Huang Y (2005) Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods. Meas Sci Technol 16(11):2193–2200. https://doi.org/10.1088/0957-0233/16/11/009

    Article  CAS  Google Scholar 

  31. Khodabakhshi F, Simchi A (2017) The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater Des 130:26–36. https://doi.org/10.1016/j.matdes.2017.05.047

    Article  CAS  Google Scholar 

  32. Çadırlı E, Büyük U, Engin S, Kaya H (2017) Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al–based quaternary alloys. J Alloys Compd 694:471–479. https://doi.org/10.1016/j.jallcom.2016.10.010

    Article  CAS  Google Scholar 

  33. Dodd CV, Deeds WE (1968) Analytical solutions to eddy-current probe-coil problems. J Appl Phys 39(6):2829–2838. https://doi.org/10.1063/1.1656680

    Article  Google Scholar 

  34. Xiong D-B, Cao M, Guo Q, Tan Z, Fan G, Li Z, Zhang D (2015) Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening-toughening of metal matrix composite. ACS Nano 9(7):6934–6943. https://doi.org/10.1021/acsnano.5b01067

    Article  CAS  Google Scholar 

  35. Xu JQ, Chen LY, Choi H, Li XC (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter 24(25):255304. https://doi.org/10.1088/0953-8984/24/25/255304

    Article  CAS  Google Scholar 

  36. Pan S, Yao G, Yuan J, Li X (2019) Electrical performance of bulk Al–ZrB2 nanocomposites from 2 K to 300 K. In: Srivatsan TS, Gupta M (eds) Nanocomposites VI: nanoscience and nanotechnology in advanced composites. Springer International Publishing, Cham, pp 63–70

    Chapter  Google Scholar 

  37. Ma B, Balachandran U, Dorris SE, Lee TH, Rondinone AJ (2019) Preparation and electrical conductivity of graphitic carbon-infused copper alloys. MRS Commun 9(1):137–143. https://doi.org/10.1557/mrc.2019.12

    Article  CAS  Google Scholar 

  38. Maki K, Ito Y, Matsunaga H, Mori H (2013) Solid-solution copper alloys with high strength and high electrical conductivity. Scr Mater 68(10):777–780. https://doi.org/10.1016/j.scriptamat.2012.12.027

    Article  CAS  Google Scholar 

  39. Pan S, Guan Z, Yao G, Yuan J, Li X (2020) Mo-enhanced chemical stability of TiC nanoparticles in molten Al. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.158169

    Article  Google Scholar 

  40. Wang W, Pan Q, Jiang F, Yu Y, Lin G, Wang X, Ye J, Pan D, Huang Z, Xiang S, Li J, Liu B (2022) Microstructure evolution and performances of Al-0.7Mg-0.6Si-0.2Ce-X (XSc, Y and Zr) alloys with high strength and high electrical conductivity. J Alloys Compd 895:162654. https://doi.org/10.1016/j.jallcom.2021.162654

    Article  CAS  Google Scholar 

  41. Ho CY, Ackerman MW, Wu KY, Havill TN, Bogaard RH, Matula RA, Oh SG, James HM (1983) Electrical resistivity of ten selected binary alloy systems. J Phys Chem Ref Data 12(2):183–322. https://doi.org/10.1063/1.555684

    Article  CAS  Google Scholar 

  42. Coleridge PT, Templeton IM (1971) The effect of alloying on the fermi surface of copper. II. Electron-scattering and neck cross sections with dilute heterovalent and transition metal solutes. Can J Phys 49(19):2449–2461. https://doi.org/10.1139/p71-294

    Article  CAS  Google Scholar 

  43. Cai XC, Sun BR, Liu Y, Zhang N, Zhang JH, Yu H, Huang JY, Peng QM, Shen TD (2018) Selection of grain-boundary segregation elements for achieving stable and strong nanocrystalline Mg. Mater Sci Eng A 717:144–153. https://doi.org/10.1016/j.msea.2018.01.058

    Article  CAS  Google Scholar 

  44. Zou C, Kang H, Wang W, Chen Z, Li R, Gao X, Li T, Wang T (2016) Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites. J Alloys Compd 687:312–319. https://doi.org/10.1016/j.jallcom.2016.06.129

    Article  CAS  Google Scholar 

  45. Cui X, Cui H, Wu Y, Liu X (2019) The improvement of electrical conductivity of hypoeutectic Al-Si alloys achieved by composite melt treatment. J Alloys Compd 788:1322–1328. https://doi.org/10.1016/j.jallcom.2019.02.242

    Article  CAS  Google Scholar 

  46. Wang Q, Li Y, Chen Z, Wang M, Zhu H, Wang H (2021) Understanding alloying behaviors of Sc, Ni and Zn additions on Al/TiB2 interfaces based on interfacial characteristics and solute properties. Surf Interfaces 26:101427. https://doi.org/10.1016/j.surfin.2021.101427

    Article  CAS  Google Scholar 

  47. Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304(5669):422–426. https://doi.org/10.1126/science.1092905

    Article  CAS  Google Scholar 

  48. Karbalaei Akbari M, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater Des 66:150–161. https://doi.org/10.1016/j.matdes.2014.10.048

    Article  CAS  Google Scholar 

  49. Zhou D, Qiu F, Jiang Q (2015) The nano-sized TiC particle reinforced Al–Cu matrix composite with superior tensile ductility. Mater Sci Eng A 622:189–193. https://doi.org/10.1016/j.msea.2014.11.006

    Article  CAS  Google Scholar 

  50. Pan S, Zheng T, Yuan J, Jin K, Li X (2021) TiB2 nanoparticles-regulated oxidation behavior in aluminum alloy 7075. Corros Sci. https://doi.org/10.1016/j.corsci.2021.109749

    Article  Google Scholar 

  51. Orlova TS, Mavlyutov AM, Bondarenko AS, Kasatkin IA, Murashkin MY, Valiev RZ (2016) Influence of grain boundary state on electrical resistivity of ultrafine grained aluminium. Philos Mag 96(23):2429–2444. https://doi.org/10.1080/14786435.2016.1204022

    Article  CAS  Google Scholar 

  52. Orlova TS, Ankudinov AV, Mavlyutov AM, Resnina NN (2018) Effect of grain boundaries on the electron work function of ultrafine grained aluminum. Rev Adv Mater Sci 57(1):110–115. https://doi.org/10.1515/rams-2018-0053

    Article  CAS  Google Scholar 

  53. Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119(8):085101. https://doi.org/10.1063/1.4942216

    Article  CAS  Google Scholar 

  54. Tong X, You G, Ding Y, Xue H, Wang Y, Guo W (2018) Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium. Mater Lett 229:261–264. https://doi.org/10.1016/j.matlet.2018.07.037

    Article  CAS  Google Scholar 

  55. Bachar N, Lerer S, Hacohen-Gourgy S, Almog B, Deutscher G (2013) Kondo-like behavior near the metal-to-insulator transition of nanoscale granular aluminum. Phys Rev B 87(21):214512. https://doi.org/10.1103/PhysRevB.87.214512

    Article  CAS  Google Scholar 

  56. Selvakumar N, Gangatharan K Electrical resistivity, tribological behaviour of multiwalled carbon nanotubes and nanoboron carbide particles reinforced copper hybrid composites for pantograph application https://www.hindawi.com/journals/amse/2016/3432979/abs/. Accessed from 18 Dec 2019. https://doi.org/10.1155/2016/3432979

  57. Tardieu S, Mesguich D, Lonjon A, Lecouturier F, Ferreira N, Chevallier G, Proietti A, Estournès C, Laurent C (2019) Nanostructured 1% silver-copper composite wires with a high tensile strength and a high electrical conductivity. Mater Sci Eng A 761:138048. https://doi.org/10.1016/j.msea.2019.138048

    Article  CAS  Google Scholar 

  58. Mayadas AF, Shatzkes M, Janak JF (1969) Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl Phys Lett 14(11):345–347. https://doi.org/10.1063/1.1652680

    Article  Google Scholar 

  59. Akbarpour MR, Mousa Mirabad H, Alipour S, Kim HS (2020) Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods. Mater Sci Eng A 773:138888. https://doi.org/10.1016/j.msea.2019.138888

    Article  CAS  Google Scholar 

  60. Yao G, Cao C, Pan S, Li X (2020) Facile manufacturing of bimodal grained copper with nanoparticles. Mater Lett 281:128606. https://doi.org/10.1016/j.matlet.2020.128606

    Article  CAS  Google Scholar 

  61. Lin D, Motlag M, Saei M, Jin S, Rahimi RM, Bahr D, Cheng GJ (2018) Shock engineering the additive manufactured graphene-metal nanocomposite with high density nanotwins and dislocations for ultra-stable mechanical properties. Acta Mater 150:360–372. https://doi.org/10.1016/j.actamat.2018.03.013

    Article  CAS  Google Scholar 

  62. Xiong L, Shuai J, Liu K, Hou Z, Zhu L, Li W (2019) Enhanced mechanical and electrical properties of super-aligned carbon nanotubes reinforced copper by severe plastic deformation. Compos Part B Eng 160:315–320. https://doi.org/10.1016/j.compositesb.2018.10.023

    Article  CAS  Google Scholar 

  63. Karasek KR, Bevk J (1981) Normal-state resistivity of in situ-formed ultrafine filamentary cu-nb composites. J Appl Phys 52(3):1370–1375. https://doi.org/10.1063/1.329767

    Article  CAS  Google Scholar 

  64. Liang T, Ashton M, Choudhary K, Zhang D, Fonseca AF, Revard BC, Hennig RG, Phillpot SR, Sinnott SB (2016) Properties of Ti/TiC interfaces from molecular dynamics simulations. J Phys Chem C 120(23):12530–12538. https://doi.org/10.1021/acs.jpcc.6b02763

    Article  CAS  Google Scholar 

  65. Johansson SAE, Christensen M, Wahnström G (2005) Interface energy of semicoherent metal-ceramic interfaces. Phys Rev Lett 95(22):226108. https://doi.org/10.1103/PhysRevLett.95.226108

    Article  CAS  Google Scholar 

  66. Zhang S, Chen G, Qu T, Fang G, Bai S, Yan Y, Zhang G, Zhou Z, Shen J, Yao D, Zhang Y, Shi Q (2020) Simultaneously enhancing mechanical properties and electrical conductivity of aluminum by using graphene as the reinforcement. Mater Lett 265:127440. https://doi.org/10.1016/j.matlet.2020.127440.Ujah

    Article  CAS  Google Scholar 

  67. Pan S, Yuan J, Zheng T, She Z, Li X (2021) Interfacial thermal conductance of in situ aluminum-matrix nanocomposites. J Mater Sci. https://doi.org/10.1007/s10853-021-06176-7

    Article  Google Scholar 

  68. Pan Y, Xiao S, Lu X, Zhou C, Li Y, Liu Z, Liu B, Xu W, Jia C, Qu X (2019) Fabrication, mechanical properties and electrical conductivity of Al2O3 reinforced Cu/CNTs composites. J Alloys Compd 782:1015–1023. https://doi.org/10.1016/j.jallcom.2018.12.222

    Article  CAS  Google Scholar 

  69. Dong B-X, Yang H-Y, Qiu F, Li Q, Shu S-L, Zhang B-Q, Jiang Q-C (2019) Design of TiCx nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: experiment and first-principle calculation. Mater Des. https://doi.org/10.1016/j.matdes.2019.107951

    Article  Google Scholar 

  70. Mosleh-Shirazi S, Hua G, Akhlaghi F, Yan X, Li D (2015) Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite. Sci Rep 5:18154. https://doi.org/10.1038/srep18154

    Article  CAS  Google Scholar 

  71. Arya A, Carter EA (2003) Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from First principles. J Chem Phys 118(19):8982–8996. https://doi.org/10.1063/1.1565323

    Article  CAS  Google Scholar 

  72. Xi Y, Bai Y, Gao K, Pang X, Yang H, Yan L, Volinsky AA (2018) Residual stress and microstructure effects on mechanical, tribological and electrical properties of TiN coatings on 304 stainless steel. Ceram Int 44(13):15851–15858. https://doi.org/10.1016/j.ceramint.2018.05.266

    Article  CAS  Google Scholar 

  73. Zahid F, Ke Y, Gall D, Guo H (2010) Resistivity of thin Cu films coated with Ta, Ti, Ru, Al, and Pd barrier layers from first principles. Phys Rev B 81(4):045406. https://doi.org/10.1103/PhysRevB.81.045406

    Article  CAS  Google Scholar 

  74. Zawrah MF, Mostafa HA, Taha MA (2019) Effect of SiC content on microstructure, mechanical and electrical properties of sintered Al-20Si-XSiC nanocomposites fabricated by mechanical alloying. Mater Res Express 6(12):125014. https://doi.org/10.1088/2053-1591/ab534e

    Article  CAS  Google Scholar 

  75. Mirza FA, Chen DL (2015) A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites. Materials 8(8):5138–5153. https://doi.org/10.3390/ma8085138

    Article  CAS  Google Scholar 

  76. Hassold GN, Holm EA, Srolovitz DJ (1990) Effects of particle size on inhibited grain growth. Scr Metall Mater 24(1):101–106. https://doi.org/10.1016/0956-716X(90)90574-Z

    Article  CAS  Google Scholar 

  77. Saboori A, Pavese M, Badini C, Fino P (2018) A novel approach to enhance the mechanical strength and electrical and thermal conductivity of Cu-GNP nanocomposites. Metall Mater Trans A 49(1):333–345. https://doi.org/10.1007/s11661-017-4409-y

    Article  CAS  Google Scholar 

  78. Abu-Oqail A, Samir A, Essa ARS, Wagih A, Fathy A (2019) Effect of GNPs coated Ag on microstructure and mechanical properties of Cu-Fe dual-matrix nanocomposite. J Alloys Compd 781:64–74. https://doi.org/10.1016/j.jallcom.2018.12.042

    Article  CAS  Google Scholar 

  79. Hesabi ZR, Simchi A, Reihani SMS (2006) Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites. Mater Sci Eng A 428(1):159–168. https://doi.org/10.1016/j.msea.2006.04.116

    Article  CAS  Google Scholar 

  80. Saberi Y, Zebarjad SM, Akbari GH (2009) On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite. J Alloys Compd 484(1):637–640. https://doi.org/10.1016/j.jallcom.2009.05.009

    Article  CAS  Google Scholar 

  81. Srivastava VC, Ojha SN (2005) Microstructure and electrical conductivity of Al-SiCp composites produced by spray forming process. Bull Mater Sci 28(2):125–130. https://doi.org/10.1007/BF02704231

    Article  CAS  Google Scholar 

  82. Nasr Isfahani MJ, Payami F, Asadabad MA, Shokri AA (2019) Investigation of the effect of boron carbide nanoparticles on the structural, electrical and mechanical properties of Al-B4C nanocomposites. J Alloys Compd 797:1348–1358. https://doi.org/10.1016/j.jallcom.2019.05.188

    Article  CAS  Google Scholar 

  83. El-Hadek MA, Kaytbay S (2009) Al2O3 particle size effect on reinforced copper alloys: an experimental study. Strain 45(6):506–515. https://doi.org/10.1111/j.1475-1305.2008.00552.x

    Article  Google Scholar 

  84. Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55(3):211–218. https://doi.org/10.1016/j.matchar.2005.05.003

    Article  CAS  Google Scholar 

  85. Shuai J, Xiong L, Zhu L, Li W (2016) Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite. Compos Part A Appl Sci Manuf 88:148–155. https://doi.org/10.1016/j.compositesa.2016.05.027

    Article  CAS  Google Scholar 

  86. Carneiro Í, Simões S (2020) Effect of morphology and structure of MWCNTs on metal matrix nanocomposites. Materials 13(23):5557. https://doi.org/10.3390/ma13235557

    Article  CAS  Google Scholar 

  87. Hou JP, Li R, Wang Q, Yu HY, Zhang ZJ, Chen QY, Ma H, Wu XM, Li XW, Zhang ZF (2018) Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary. J Alloys Compd 769:96–109. https://doi.org/10.1016/j.jallcom.2018.07.358

    Article  CAS  Google Scholar 

  88. Dong Z, Peng Y, Zhang X, Xiong D-B (2021) Plasma assisted milling treatment for improving mechanical and electrical properties of in-situ grown graphene/copper composites. Compos Commun 24:100619. https://doi.org/10.1016/j.coco.2020.100619

    Article  Google Scholar 

  89. Barmouz M, Givi MKB (2011) Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior. Compos Part A Appl Sci Manuf 42(10):1445–1453. https://doi.org/10.1016/j.compositesa.2011.06.010

    Article  CAS  Google Scholar 

  90. Fu S, Chen X, Liu P (2020) Preparation of CNTs/Cu composites with good electrical conductivity and excellent mechanical properties. Mater Sci Eng A 771:138656. https://doi.org/10.1016/j.msea.2019.138656

    Article  CAS  Google Scholar 

  91. Moustafa EB, Taha MA (2020) Preparation of high strength graphene reinforced cu-based nanocomposites via mechanical alloying method: microstructural, mechanical and electrical properties. Appl Phys A 126(3):220. https://doi.org/10.1007/s00339-020-3412-0

    Article  CAS  Google Scholar 

  92. Lan J, Yang Y, Li X (2004) Microstructure and microhardness of sic nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater Sci Eng A 386(1):284–290. https://doi.org/10.1016/j.msea.2004.07.024

    Article  CAS  Google Scholar 

  93. Ardakani MRK, Amirkhanlou S, Khorsand S (2014) Cross accumulative roll bonding—a novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties. Mater Sci Eng A 591:144–149. https://doi.org/10.1016/j.msea.2013.10.073

    Article  CAS  Google Scholar 

  94. Mughrabi H, Hoeppel HW, Kautz M, Valiev RZ (2003) Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Z Fuer Metall 94:1079–1083. https://doi.org/10.1515/ijmr-2003-0197

    Article  CAS  Google Scholar 

  95. Zhao H, Gault B, Ponge D, Raabe D (2020) Reversion and re-aging of a peak aged Al-Zn-Mg-Cu Alloy. Scr Mater 188:269–273. https://doi.org/10.1016/j.scriptamat.2020.07.049

    Article  CAS  Google Scholar 

  96. Li J, Ni J, Huang B, Chen J, Xu Z, Liao S, Wang C, Luo W (2019) Long-term ball milling and hot pressing of in-situ nanoscale tungsten carbides reinforced copper composite and its characterization. Mater Charact 152:134–140. https://doi.org/10.1016/j.matchar.2019.04.014

    Article  CAS  Google Scholar 

  97. Uddin SM, Mahmud T, Wolf C, Glanz C, Kolaric I, Volkmer C, Höller H, Wienecke U, Roth S, Fecht H-J (2010) Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos Sci Technol 70(16):2253–2257. https://doi.org/10.1016/j.compscitech.2010.07.012

    Article  CAS  Google Scholar 

  98. Singh MK, Gautam RK (2019) Structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites. J Mater Eng Perform 28(2):886–899. https://doi.org/10.1007/s11665-019-3860-x

    Article  CAS  Google Scholar 

  99. Chen F, Ying J, Wang Y, Du S, Liu Z, Huang Q (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842. https://doi.org/10.1016/j.carbon.2015.10.023

    Article  CAS  Google Scholar 

  100. Varol T, Canakci A (2015) The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy. J Alloys Compd 649:1066–1074. https://doi.org/10.1016/j.jallcom.2015.07.008

    Article  CAS  Google Scholar 

  101. Xie J, Zeng W, Zhou D, Zhang D (2018) Microstructure and properties of a nanocrystalline Cu-Al-NbC composite with high strength and good conductivity. Mater Lett 214:174–177. https://doi.org/10.1016/j.matlet.2017.12.009

    Article  CAS  Google Scholar 

  102. Chandrasekhar SB, Sudhakara Sarma S, Ramakrishna M, Suresh Babu P, Rao TN, Kashyap BP (2014) Microstructure and properties of hot extruded Cu–1wt% Al2O3 nano-composites synthesized by Various techniques. Mater Sci Eng A 591:46–53. https://doi.org/10.1016/j.msea.2013.10.074

    Article  CAS  Google Scholar 

  103. Zhou X, Hu Z, Yi D (2019) Enhancing the oxidation resistance and electrical conductivity of alumina reinforced copper-based composites via introducing Ag and annealing treatment. J Alloys Compd 787:786–793. https://doi.org/10.1016/j.jallcom.2019.02.053

    Article  CAS  Google Scholar 

  104. Salvo C, Mangalaraja RV, Udayabashkar R, Lopez M, Aguilar C (2019) Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites. J Alloys Compd 777:309–316. https://doi.org/10.1016/j.jallcom.2018.10.357

    Article  CAS  Google Scholar 

  105. Taha MA, Zawrah MF (2017) Effect of nano ZrO2 on strengthening and electrical properties of Cu-matrix nanocomposites prepared by mechanical alloying. Ceram Int 43(15):12698–12704. https://doi.org/10.1016/j.ceramint.2017.06.153

    Article  CAS  Google Scholar 

  106. Kumar H, Khan MZ, Vashista M (2018) Microstructure, mechanical and electrical characterization of zirconia reinforced copper based surface composite by friction stir processing. Mater Res Express 5(8):086505. https://doi.org/10.1088/2053-1591/aac9a4

    Article  CAS  Google Scholar 

  107. Daoush WM, Lim BK, Mo CB, Nam DH, Hong SH (2009) Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Mater Sci Eng A 513–514:247–253. https://doi.org/10.1016/j.msea.2009.01.073

    Article  CAS  Google Scholar 

  108. Rajkovic V, Bozic D, Jovanovic MT (2010) Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites. Mater Des 31(4):1962–1970. https://doi.org/10.1016/j.matdes.2009.10.037

    Article  CAS  Google Scholar 

  109. Mula S, Sahani P, Pratihar SK, Mal S, Koch CC (2011) Mechanical properties and electrical conductivity of Cu–Cr and Cu–Cr–4% SiC Nanocomposites for thermo-electric applications. Mater Sci Eng A 528(13):4348–4356. https://doi.org/10.1016/j.msea.2011.03.040

    Article  CAS  Google Scholar 

  110. Daoush W, Swidan A, El-Aziz GA, Abdelhalim M (2016) Fabrication, microstructure, thermal and electrical properties of copper heat sink composites. MSA 07(09):542–561. https://doi.org/10.4236/msa.2016.79046

    Article  CAS  Google Scholar 

  111. Fathy A, Wagih A, Abu-Oqail A (2019) Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling. Ceram Int 45(2):2319–2329. https://doi.org/10.1016/j.ceramint.2018.10.147

    Article  CAS  Google Scholar 

  112. Fu Y, Pan Q, Cao Z, Li S, Huo Y (2019) Strength and electrical conductivity behavior of nanoparticles reaction on new alumina dispersion-strengthened copper alloy. J Alloys Compd 798:616–621. https://doi.org/10.1016/j.jallcom.2019.05.271

    Article  CAS  Google Scholar 

  113. Ayyappadas C, Muthuchamy A, Naveen NK, Agrawal DK, Annamalai AR (2019) An investigation on tribological and electrical behaviour of conventional and microwave processed copper-graphite composites. Mater Res Express 6(6):066573. https://doi.org/10.1088/2053-1591/ab1027

    Article  CAS  Google Scholar 

  114. Saravanan S, Senthilkumar P, Ravichandran M, Anandakrishnan V (2017) Mechanical, electrical, and corrosion behavior of AA6063/TiC composites synthesized via stir casting route. J Mater Res 32(3):606–614. https://doi.org/10.1557/jmr.2016.503

    Article  CAS  Google Scholar 

  115. Sugio K, Kawano N, Hirose T, Choi Y-B, Sasaki G (2016) Estimation of the electrical conductivity of TiB2/Al composites by using image analysis. Mech Eng J. https://doi.org/10.1299/mej.15-00577

    Article  Google Scholar 

  116. Sivaraj M et al (2018) The effects of TiC reinforcement on thermal, electrical and dry sliding wear behaviour of aluminium matrix nanocomposites. Int J Mech Prod Eng Res Dev 8(1):373–388

    Google Scholar 

  117. Huang G, Shen Y, Guo R, Guan W (2016) Fabrication of tungsten particles reinforced aluminum matrix composites using multi-pass friction stir processing: evaluation of microstructural, mechanical and electrical behavior. Mater Sci Eng A 674:504–513. https://doi.org/10.1016/j.msea.2016.07.124

    Article  CAS  Google Scholar 

  118. Salem MA, El-Batanony IG, Ghanem M, Abd ElAal MI (2017) Effect of the matrix and reinforcement sizes on the microstructure, the physical and mechanical properties of Al-SiC composites. J Eng Mater Technol. https://doi.org/10.1115/1.4034959

    Article  Google Scholar 

  119. Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Tensile Strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J Mater Sci Technol 30(7):649–655. https://doi.org/10.1016/j.jmst.2014.04.016

    Article  CAS  Google Scholar 

  120. Ali M, Fadhel MI, Alghoul MA, Zaharim A, Sopian K (2011) Synthesis and characterization of aluminum matrix composites reinforced with various ratio of TiC for light devices. Models Methods Appl Sci 169:174

    Google Scholar 

  121. Dixit S, Kashyap S, Kailas SV, Chattopadhyay K (2018) Manufacturing of high strength aluminium composites reinforced with nano tungsten particles for electrical application and investigation on in-situ reaction during processing. J Alloys Compd 767:1072–1082. https://doi.org/10.1016/j.jallcom.2018.07.110

    Article  CAS  Google Scholar 

  122. Florián-Algarín D, Marrero R, Padilla A, Suárez OM (2015) Strengthening of Al and Al-Mg alloy wires by melt inoculation with Al/MgB2 nanocomposite. J Mech Behav Mater 24(5–6):207–212. https://doi.org/10.1515/jmbm-2015-0018

    Article  CAS  Google Scholar 

  123. Zhao Q, Tan S, Xie M, Liu Y, Yi J (2018) A study on the CNTs-Ag composites prepared based on spark plasma sintering and improved electroless plating assisted by ultrasonic spray atomization. J Alloys Compd 737:31–38. https://doi.org/10.1016/j.jallcom.2017.12.066

    Article  CAS  Google Scholar 

  124. Yang R, Liu S, Chen J, Cui H, Liu M, Zhu F, Yang Y, Xie M, Sun X, Li X (2019) Porous Y2O3 fiber-reinforced silver composite exhibiting enhanced mechanical and electrical properties. Ceram Int 45(2):1881–1886. https://doi.org/10.1016/j.ceramint.2018.10.079

    Article  CAS  Google Scholar 

  125. Yang F, Dong L, Cai L, Wang L, Xie Z, Fang F (2021) Effect of cold drawing strain on the microstructure, mechanical properties and electrical conductivity of low-oxygen copper wires. Mater Sci Eng A 818:141348. https://doi.org/10.1016/j.msea.2021.141348

    Article  CAS  Google Scholar 

  126. Pan S, Yao G, Sokoluk M, Guan Z, Li X (2019) Enhanced thermal stability in Cu-40 wt% Zn/WC nanocomposite. Mater Des. https://doi.org/10.1016/j.matdes.2019.107964

    Article  Google Scholar 

  127. Karube S, Kondou K, Otani Y (2016) Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfaces. Appl Phys Express 9(3):033001. https://doi.org/10.7567/APEX.9.033001

    Article  CAS  Google Scholar 

  128. Zhan Y, Zhang G (2006) The role of graphite particles in the high-temperature wear of copper hybrid composites against steel. Mater Des 27(1):79–84. https://doi.org/10.1016/j.matdes.2004.08.019

    Article  CAS  Google Scholar 

  129. Futami T, Ohira M, Muto H, Sakai M (2009) Contact/scratch-induced surface deformation and damage of copper-graphite particulate composites. Carbon 47(11):2742–2751. https://doi.org/10.1016/j.carbon.2009.05.034

    Article  CAS  Google Scholar 

  130. Zhao Q, Gan X, Zhou K (2019) Enhanced Properties of carbon nanotube-graphite hybrid-reinforced cu matrix composites via optimization of the preparation technology and interface structure. Powder Technol 355:408–416. https://doi.org/10.1016/j.powtec.2019.07.055

    Article  CAS  Google Scholar 

  131. Zhang C, Cai Z, Tang Y, Wang R, Peng C, Feng Y (2018) Microstructure and thermal behavior of diamond/Cu composites: effects of surface modification. Diam Relat Mater 86:98–108. https://doi.org/10.1016/j.diamond.2018.04.020

    Article  CAS  Google Scholar 

  132. Guan Z, Hwang I, Pan S, Li X (2018) Scalable manufacturing of AgCu40 (wt%)–WC nanocomposite microwires. J Micro Nano-Manuf. https://doi.org/10.1115/1.4040558

    Article  Google Scholar 

  133. Shiri SG, Abachi P, Pourazarang K, Rahvard MM (2015) Preparation of in-situ Cu/NbC nanocomposite and its functionally graded behavior for electrical contact applications. Trans Nonferrous Met Soc China 25(3):863–872. https://doi.org/10.1016/S1003-6326(15)63675-5

    Article  CAS  Google Scholar 

  134. Yuan J, Pan S, Zheng T, Li X (2021) Nanoparticle promoted solution treatment by reducing segregation in AA7034. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2021.141691

    Article  Google Scholar 

  135. Jamwal A, Mittal P, Agrawal R, Gupta S, Kumar D, Sadasivuni KK, Gupta P (2020) Towards sustainable copper matrix composites: manufacturing routes with structural, mechanical, electrical and corrosion behaviour. J Compos Mater 54(19):2635–2649. https://doi.org/10.1177/0021998319900655

    Article  CAS  Google Scholar 

  136. Shaik MA, Golla BR (2020) Mechanical, tribological and electrical properties of ZrB2 reinforced Cu Processed via milling and high-pressure hot pressing. Ceram Int 46(12):20226–20235. https://doi.org/10.1016/j.ceramint.2020.05.104

    Article  CAS  Google Scholar 

  137. Gong T, Yao P, Xiong X, Zhou H, Zhang Z, Xiao Y, Zhao L, Deng M (2019) Microstructure and tribological behavior of interfaces in Cu-SiO2 and Cu-Cr metal matrix composites. J Alloys Compd 786:975–985. https://doi.org/10.1016/j.jallcom.2019.01.255

    Article  CAS  Google Scholar 

  138. Sadoun AM, Fathy A, Abu-Oqail A, Elmetwaly HT, Wagih A (2020) Structural, mechanical and tribological properties of Cu–ZrO2/GNPs hybrid nanocomposites. Ceram Int 46(6):7586–7594. https://doi.org/10.1016/j.ceramint.2019.11.258

    Article  CAS  Google Scholar 

  139. Zhou H, Yao P, Gong T, Xiao Y, Zhang Z, Zhao L, Fan K, Deng M (2019) Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites. Tribol Int 138:380–391. https://doi.org/10.1016/j.triboint.2019.06.005

    Article  CAS  Google Scholar 

  140. Yao G, Pan S, Yuan J, Guan Z, Li X (2021) A novel process for manufacturing copper with size-controlled in-situ tungsten nanoparticles by casting. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2021.117187

    Article  Google Scholar 

  141. Zhao Z, Bai P, Du W, Liu B, Pan D, Das R, Liu C, Guo Z (2020) An overview of graphene and its derivatives reinforced metal matrix composites: preparation, properties and applications. Carbon 170:302–326. https://doi.org/10.1016/j.carbon.2020.08.040

    Article  CAS  Google Scholar 

  142. Guo S, Zhang X, Shi C, Liu E, He C, He F, Zhao N (2019) Enhanced mechanical properties and electrical conductivity of graphene nanoplatelets/Cu composites by in situ formation of Mo2C nanoparticles. Mater Sci Eng A 766:138365. https://doi.org/10.1016/j.msea.2019.138365

    Article  CAS  Google Scholar 

  143. Wang M, Wang L-D, Sheng J, Yang Z-Y, Shi Z-D, Zhu Y-P, Li J, Fei W-D (2019) Direct Synthesis of high-quality graphene on Cu powders from adsorption of small aromatic hydrocarbons: a route to high strength and electrical conductivity for graphene/Cu composite. J Alloys Compd 798:403–413. https://doi.org/10.1016/j.jallcom.2019.05.273

    Article  CAS  Google Scholar 

  144. Celebi K, Cole MT, Choi JW, Wyczisk F, Legagneux P, Rupesinghe N, Robertson J, Teo KBK, Park HG (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13(3):967–974. https://doi.org/10.1021/nl303934v

    Article  CAS  Google Scholar 

  145. Asgharzadeh H, Eslami S (2019) Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. J Alloys Compd 806:553–565. https://doi.org/10.1016/j.jallcom.2019.07.183

    Article  CAS  Google Scholar 

  146. Zhang Y, Wang Q, Chen G, Ramachandran CS (2020) Mechanical, tribological and corrosion physiognomies of CNT-Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process. Surf Coat Technol 403:126380. https://doi.org/10.1016/j.surfcoat.2020.126380

    Article  CAS  Google Scholar 

  147. Pan S, Yao G, Yuan J, Sokoluk M, Li X (2020) Manufacturing of bulk Al-12Zn-3.7Mg-1Cu alloy with TiC nanoparticles. Proced Manuf 48:325–331. https://doi.org/10.1016/j.promfg.2020.05.054

    Article  Google Scholar 

  148. Kalaiyarasan A, Sundaram S, Gunasekaran K, Raj BJ (2021) Tribological characteristics of AA8090-WC-ZrC metal matrix composites prepared by stir casting process for aerospace applications. Ind Lubr Tribol 73(6):980–985. https://doi.org/10.1108/ILT-05-2021-0191

    Article  Google Scholar 

  149. Mohammad Sharifi E, Karimzadeh F, Enayati MH (2011) Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Mater Des 32(6):3263–3271. https://doi.org/10.1016/j.matdes.2011.02.033

    Article  CAS  Google Scholar 

  150. Prasad Reddy A, Vamsi Krishna P, Rao RN (2019) Tribological behaviour of Al6061–2SiC-XGr hybrid metal matrix nanocomposites fabricated through ultrasonically assisted stir casting technique. SILICON 11(6):2853–2871. https://doi.org/10.1007/s12633-019-0072-9

    Article  CAS  Google Scholar 

  151. Kumar GBV, Panigrahy PP, Nithika S, Pramod R, Rao CSP (2019) Assessment of mechanical and tribological characteristics of silicon nitride reinforced aluminum metal matrix composites. Compos Part B Eng 175:107138. https://doi.org/10.1016/j.compositesb.2019.107138

    Article  CAS  Google Scholar 

  152. Naidu KM, Reddy CM (2018) An investigation on dry sliding wear behaviour of AA6061-AlNp composite. IOP Conf Ser Mater Sci Eng 330:012053. https://doi.org/10.1088/1757-899X/330/1/012053

    Article  Google Scholar 

  153. Eltaher MA, Wagih A, Melaibari A, Fathy A, Lubineau G (2020) Effect of Al2O3 particles on mechanical and tribological properties of Al–Mg dual-matrix nanocomposites. Ceram Int 46(5):5779–5787. https://doi.org/10.1016/j.ceramint.2019.11.028

    Article  CAS  Google Scholar 

  154. Ujah CO, Popoola API, Popoola OM, Aigbodion VS (2019) Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int J Adv Manuf Technol 101(9):2275–2282. https://doi.org/10.1007/s00170-018-3128-x

    Article  Google Scholar 

  155. Hekner B, Myalski J, Valle N, Botor-Probierz A, Sopicka-Lizer M, Wieczorek J (2017) Friction and wear behavior of Al-SiC(n) hybrid composites with carbon addition. Compos Part B Eng 108:291–300. https://doi.org/10.1016/j.compositesb.2016.09.103

    Article  CAS  Google Scholar 

  156. Moustafa EB (2021) Hybridization effect of BN and Al2O3 nanoparticles on the physical, wear, and electrical properties of aluminum AA1060 nanocomposites. Appl Phys A 127(9):724. https://doi.org/10.1007/s00339-021-04871-5

    Article  CAS  Google Scholar 

  157. Sahandi Zangabad P, Khodabakhshi F, Simchi A, Kokabi AH (2016) Fatigue fracture of friction-stir processed Al–Al3Ti–MgO hybrid nanocomposites. Int J Fatigue 87:266–278. https://doi.org/10.1016/j.ijfatigue.2016.02.007

    Article  CAS  Google Scholar 

  158. Shahid RN, Scudino S (2018) Strengthening of Al-Fe 3 Al composites by the generation of harmonic structures. Sci Rep 8(1):6484. https://doi.org/10.1038/s41598-018-24824-y

    Article  CAS  Google Scholar 

  159. Zhou W, Mikulova P, Fan Y, Kikuchi K, Nomura N, Kawasaki A (2019) Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor. Compos Part B Eng 167:93–99. https://doi.org/10.1016/j.compositesb.2018.12.018

    Article  CAS  Google Scholar 

  160. Li Y, Hu B, Liu B, Nie A, Gu Q, Wang J, Li Q (2020) Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system. Acta Mater 187:51–65. https://doi.org/10.1016/j.actamat.2020.01.039

    Article  CAS  Google Scholar 

  161. Crespilho FN, Iost RM, Travain SA, Oliveira ON, Zucolotto V (2009) Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens Bioelectron 24(10):3073–3077. https://doi.org/10.1016/j.bios.2009.03.026

    Article  CAS  Google Scholar 

  162. Elashmawi IS, Menazea AA (2019) Different time’s Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J Mater Res Technol 8(2):1944–1951. https://doi.org/10.1016/j.jmrt.2019.01.011

    Article  CAS  Google Scholar 

  163. Wu C, Kim TW, Li F, Guo T (2016) Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/ag nanowires/graphene core-shell nanocomposites. ACS Nano 10(7):6449–6457. https://doi.org/10.1021/acsnano.5b08137

    Article  CAS  Google Scholar 

  164. Xu LY, Yang GY, Jing HY, Wei J, Han YD (2014) Ag–graphene hybrid conductive ink for writing electronics. Nanotechnology 25(5):055201. https://doi.org/10.1088/0957-4484/25/5/055201

    Article  CAS  Google Scholar 

  165. Yang H, Li K, Bu Y, Wu J, Fang Y, Meng L, Liu J, Wang H (2021) Nanoprecipitates induced dislocation pinning and multiplication strategy for designing high strength, plasticity and conductivity Cu alloys. Scr Mater 195:113741. https://doi.org/10.1016/j.scriptamat.2021.113741

    Article  CAS  Google Scholar 

  166. Wu Q, Yang C, Xue F, Sun Y (2011) Effect of Mo addition on the microstructure and wear resistance of in situ TiC/Al composite. Mater Des 32(10):4999–5003. https://doi.org/10.1016/j.matdes.2011.06.045

    Article  CAS  Google Scholar 

  167. Zhang Q, Chen B, Zhao B, Liang S, Zhuo L (2019) Microstructure and properties of W-30 wt%Cu composites reinforced with WC particles prepared by vapor deposition carbonization. JOM 71(8):2541–2548. https://doi.org/10.1007/s11837-019-03520-w

    Article  CAS  Google Scholar 

  168. Zhang Q, Cheng Y, Chen B, Liang S, Zhuo L (2020) Microstructure and properties of W-25 wt% Cu Composites reinforced with tungsten carbide produced by an in situ reaction. Vacuum 177:109423. https://doi.org/10.1016/j.vacuum.2020.109423

    Article  CAS  Google Scholar 

  169. Gao C, Liu Z, Xiao Z, Zhang W, Wong K, Akbarzadeh AH (2021) Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: microstructural evolution and mechanical properties. J Alloys Compd 853:156722. https://doi.org/10.1016/j.jallcom.2020.156722

    Article  CAS  Google Scholar 

  170. Ban Y, Geng Y, Hou J, Zhang Y, Zhou M, Jia Y, Tian B, Liu Y, Li X, Volinsky AA (2021) Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si-Cr alloy. J Mater Sci Technol 93:1–6. https://doi.org/10.1016/j.jmst.2021.03.049

    Article  Google Scholar 

  171. Maeda Y, Iizuka Y, Kohyama M (2013) Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J Am Chem Soc 135(2):906–909. https://doi.org/10.1021/ja310999c

    Article  CAS  Google Scholar 

  172. Edmondson JF, Meloni GN, Costantini G, Unwin PR (2020) Synchronous electrical conductance- and electron tunnelling-scanning electrochemical microscopy measurements. ChemElectroChem 7(3):697–706. https://doi.org/10.1002/celc.201901721

    Article  CAS  Google Scholar 

  173. Kittel C, Kroemer H, Scott HL (1998) Thermal physics. Am J Phys 66(2):164–167. https://doi.org/10.1119/1.19072

    Article  Google Scholar 

  174. Kittel C, McEuen P (2018) Kittel’s introduction to solid state physics. John Wiley & Sons, New Jersy

    Google Scholar 

  175. Saboori A, Dadkhah M, Fino P, Pavese M (2018) An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties. Metals 8(6):423. https://doi.org/10.3390/met8060423

    Article  CAS  Google Scholar 

  176. Liu YQ, Cong HT, Cheng HM (2009) Thermal properties of nanocrystalline Al composites reinforced by AlN nanoparticles. J Mater Res 24(1):24–31. https://doi.org/10.1557/JMR.2009.0034

    Article  CAS  Google Scholar 

  177. Miranda AT, Bolzoni L, Barekar N, Huang Y, Shin J, Ko S-H, McKay BJ (2018) Processing, structure and thermal conductivity correlation in carbon fibre reinforced aluminium metal matrix composites. Mater Des 156:329–339. https://doi.org/10.1016/j.matdes.2018.06.059

    Article  CAS  Google Scholar 

  178. Pan S, Zhang Z (2018) Fundamental theories and basic principles of triboelectric effect: a review. Friction. https://doi.org/10.1007/s40544-018-0217-7

    Article  Google Scholar 

  179. Rao ACU, Vasu V, Govindaraju M, Srinadh KVS (2016) Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review. Trans Nonferrous Met Soc China 26(6):1447–1471. https://doi.org/10.1016/S1003-6326(16)64220-6

    Article  CAS  Google Scholar 

  180. Aljawad HA, Alalkawi HJM, Aziz GA (2020) Compression strength, dielectric and magnetic properties of new aluminium matrix hybrid nanocomposites. IOP Conf Ser Mater Sci Eng 765:012056. https://doi.org/10.1088/1757-899X/765/1/012056

    Article  CAS  Google Scholar 

  181. Jaber MH, Aziz GA, Mohammed AJ, AL-AIKawi HJ (2020) Electrical conductivity, magnetic and fatigue properties of aluminum matrix composites reinforced with nano-titanium dioxide (TiO2). Nanocomposites 6(2):47–55. https://doi.org/10.1080/20550324.2020.1769976

    Article  CAS  Google Scholar 

  182. Geng R, Jia S-Q, Qiu F, Zhao Q-L, Jiang Q-C (2020) Effects of nanosized TiC and TiB2 particles on the corrosion behavior of Al-Mg-Si alloy. Corros Sci. https://doi.org/10.1016/j.corsci.2020.108479

    Article  Google Scholar 

  183. Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban JJ, Zhang X, Dames C, Hartnoll SA, Delaire O, Wu J (2017) Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355(6323):371–374. https://doi.org/10.1126/science.aag0410

    Article  CAS  Google Scholar 

  184. Liu M, Ma Y, Wu H, Wang RY (2015) Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage. ACS Nano 9(2):1341–1351. https://doi.org/10.1021/nn505328j

    Article  CAS  Google Scholar 

  185. Guan Z, Linsley CS, Pan S, Yao G, Wu BM, Levi DS, Li X (2021) Zn–Mg–WC nanocomposites for bioresorbable cardiovascular stents: microstructure, mechanical properties, fatigue, shelf life, and corrosion. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c01358

    Article  Google Scholar 

  186. Shu R, Jiang X, Sun H, Shao Z, Song T, Luo Z (2020) Recent researches of the bio-inspired nano-carbon reinforced metal matrix composites. Compos Part A Appl Sci Manuf 131:105816. https://doi.org/10.1016/j.compositesa.2020.105816

    Article  CAS  Google Scholar 

  187. Trujillo JE, Kim JW, Lan EH, Sharratt S, Ju YS, Dunn B (2012) Metal-matrix nanocomposites with tailored coefficients of thermal expansion for improved thermomechanical reliability. J Electron Mater 41(6):1020–1023. https://doi.org/10.1007/s11664-011-1856-x

    Article  CAS  Google Scholar 

  188. Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba DN, Yumura M, Hata K (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Commun. https://doi.org/10.1038/ncomms3202

    Article  Google Scholar 

  189. Chaudhari AK, Singh VB, Singh B (2020) Structural features and functional properties of Y2O3 reinforced nickel matrix nanocomposites. ChemSel 5(37):11573–11582. https://doi.org/10.1002/slct.202002052

    Article  CAS  Google Scholar 

  190. Wang C, Li X, Hu H, Zhang L, Huang Z, Lin M, Zhang Z, Yin Z, Huang B, Gong H, Bhaskaran S, Gu Y, Makihata M, Guo Y, Lei Y, Chen Y, Wang C, Li Y, Zhang T, Chen Z, Pisano AP, Zhang L, Zhou Q, Xu S (2018) Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2(9):687–695. https://doi.org/10.1038/s41551-018-0287-x

    Article  Google Scholar 

  191. Acome E, Mitchell SK, Morrissey TG, Emmett MB, Benjamin C, King M, Radakovitz M, Keplinger C (2018) Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359(6371):61–65. https://doi.org/10.1126/science.aao6139

    Article  CAS  Google Scholar 

  192. Kääriäinen TO, Cameron DC, Tanttari M (2009) Adhesion of Ti and TiC coatings on PMMA subject to plasma treatment: effect of intermediate layers of Al2O3 and TiO2 deposited by atomic layer deposition. Plasma Process Polym 6(10):631–641. https://doi.org/10.1002/ppap.200900038

    Article  CAS  Google Scholar 

  193. Pan S, Jin K, Wang T, Zhang Z, Zheng L, Umehara N (2022) Metal matrix nanocomposites in tribology: manufacturing, performance, and mechanisms. Friction. https://doi.org/10.1007/s40544-021-0572-7

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the SciFacturing Laboratory at UCLA for the help and guidance, without which finishing this review is not possible. This paper is also published in fully sorry memory of the author’s best friend at SJTU, Mr. Dingrui Zhang, who passed away recently and whose personalities and characteristics influenced the corresponding author deeply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaihang Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Wang, T., Jin, K. et al. Understanding and designing metal matrix nanocomposites with high electrical conductivity: a review. J Mater Sci 57, 6487–6523 (2022). https://doi.org/10.1007/s10853-022-07010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07010-4

Navigation