Skip to main content

Advertisement

Log in

Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An experimental study of the microstructure, electrical conductivity, corrosion characteristics and mechanical strength of Al-Nb nanocomposite consolidated via spark plasma sintering was the focus of this work. The start-up powders as well as the sintered samples were characterised with X-ray diffractometer, transmission electron microscopy and field-emission scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The microhardness of the sintered samples was tested with Vickers hardness tester. The polarisation test was carried out with Potentiostat Autolab. The electrical conductivity was tested with four-point probe meter. The microstructural results showed homogenous dispersion of Nb reinforcement in the matrix, no grain growth and absence of voids. Good corrosion characteristics were achieved with Al-1Nb and Al-4Nb composites while the highest microhardness of 420 MPa and tensile strength of 138 MPa were obtained with Al-4Nb. The electrical conductivity increased from 38.9 to 40.1% IACS with Al-8Nb. The improved properties were as a result of the optimal sintering parameters, good fabrication attributes of SPS and the synergistic effects of Al and Nb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ismaila KA, Nouari S, Syed FH, Nasser AA (2015) Microstructure and properties of spark plasma sintered Aluminium containing 1 wt. % SiC nanoparticles. J Metals 5:70–83 ISSN 2075-4701

    Article  Google Scholar 

  2. Das A, Harimkar SP (2014) Effect of graphene nano plate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites. J Mater Sci Technol 30(11):1059–1070

    Article  Google Scholar 

  3. Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. J Powder Technol 221:220–227

    Article  Google Scholar 

  4. Feng H, Zhou Y, Jia D, Meng Q (2005) Rapid synthesis of Ti alloy with B addition by spark plasma sintering. J Mater Sci Eng A 390:344–349

    Article  Google Scholar 

  5. Saheb N, Mohammad K (2016) Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid Nano composites. J Ceram Int 42:12330–12340

    Article  Google Scholar 

  6. Groza J, Zavaliangos A (2000) Sintering activation by external electrical field. J Mater Sci Eng A 287(2):171–177

    Article  Google Scholar 

  7. Verma AS, Sumankant, Suri NM, Yashpal (2015) Corrosion behaviour of Aluminium base particulate metal matrix composites: a review. Mater Today, Proceedings 2015(2):2840–2851

    Article  Google Scholar 

  8. Abbas MK (2010) Effects of friction stir welding on the microstructure and corrosion behaviour of aluminium alloy AA6061-T651. In Proceedings of the 2nd regional Conference for engineering sciences. (pp. 1–2), Baghdad

  9. Birol Y (2007) Response to thermal exposure of the mechanically alloyed Al–Ti/C powders. J Mater Sci 42(13):5123–5128. https://doi.org/10.1007/s10853-006-1263-5

    Article  Google Scholar 

  10. Loto RT, Babalola P (2017) Corrosion polarization behaviour and microstructural analysis of AA1070 aluminium silicon carbide matrix composites in acid chloride concentrations. Cogent Eng 4. https://doi.org/10.1080/23311916.2017.1422229

  11. Thomson KE, Jiang D, Yao W, Ritchie RO, Mukherjee AK (2012) Characterization and mechanical testing of alumina-based Nano composites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. J Acta Mater 60:622–632

    Article  Google Scholar 

  12. Sairam K, Sonber JK, Murthy TSRCH, Subramanian C, Fotedar RK, Nanekar P, Hubli RC (2014) Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int J Refract Met Hard Mater 42:185–192

    Article  Google Scholar 

  13. Ehsan G, Ali F, Masoud A, Kamyar S, Touradj E (2017) Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods. J Mater 10:1255. https://doi.org/10.3390/ma10111255

    Article  Google Scholar 

  14. Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Met Mater 20(2):152–159

    Article  Google Scholar 

  15. Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik PD, Soulier M, Saunier S, Goeuriot D, Rouleau O (2012) A comparative study of spark plasma sintering (SPS), hot isostatic pressing (HIP) and microwaves sintering techniques on p-type Bi 2 Te 3 thermoelectric properties. Mater Res Bull 47:1954–1960

    Article  Google Scholar 

  16. Al-Aqeeli N (2013) Processing of CNTs reinforced Al-Based nanocomposites using different consolidation techniques. Journal of Nano materials, Article ID 370785, 10 pages https://doi.org/10.1155/2013/370785

  17. Chieh K, Te-Tan L, Kuo-Hwa T, Kuo-Ying C, Ming-Shuing C (2009) The influences of powder mixing process on the quality of W-cu composites. J Trans Canada Soc Mech Engr 33:3

    Google Scholar 

  18. Ujah CO, Popoola API, Popoola OM, Aigbodion VS (2018) Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2705-3

  19. Cahoon JR, Broughton WH, Kutzak AR (1983) The determination of yield strength from hardness measurements. Metal Trans 2:1979–1983

    Google Scholar 

  20. Adebiyi DI, Popoola API (2015) Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying. Mater Des 74:67–75

    Article  Google Scholar 

  21. Callister J, William D (2005) Fundamentals of materials science and engineering, 2nd edn. John Wiley and sons, USA, p 199. isbn:ISBN: 978-0-471-47014-4

  22. Marks LD (1994) Experimental studies of small particle structures. Rep Prog Phys 57:603–649

    Article  Google Scholar 

  23. Yadav V, Harimkar SP (2011) Microstructure and properties of spark plasma sintered carbon nanotube reinforced Aluminium matrix composites. Adv Eng Mater 13(12):1128–1134. https://doi.org/10.1002/adem.201100132

    Article  Google Scholar 

  24. Ullbrand JM, Cordoba JM, Tamayo-Ariztondo JM, Elizalde MR, Nygren M, Molina-Aldareguia JM, Oden M (2010) Thermo-mechanical properties of copper-carbon nanofibre composites prepared by spark plasma sintering and hot pressing. Compos Sci Technol 2010 70:2263–2268

    Article  Google Scholar 

  25. AzoNetwork (2018) Aluminium alloys aluminium 1050 properties, fabrication and applications. https://www.azom.com/article.aspx?ArticleID=2798

  26. Sher H, Zallen R (1970) Journal of. Chem Phys 53:3759–3761

    Google Scholar 

  27. Oladijo OP, Obadele BA, Venter AM, Cornish LA (2016) Investigating the effect of porosity on corrosion resistance and hardness of WC-co coatings on metal substrates. African Corr J 2:1

    Google Scholar 

  28. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Rathel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–848

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Centre for Energy and Electric Power (CEEP), Tshwane University of Technology, Pretoria, NRF and DHET for providing financial aid in part for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Ujah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujah, C.O., Popoola, A.P.I., Popoola, O.M. et al. Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int J Adv Manuf Technol 101, 2275–2282 (2019). https://doi.org/10.1007/s00170-018-3128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-3128-x

Keywords

Navigation