Skip to main content

Nanomaterials for Fabrication of Thermomechanical Robust Composite

  • Chapter
  • First Online:
Nanoparticles Reinforced Metal Nanocomposites

Abstract

Nanomaterials have received a lot of interest as an emerging material because of their small size, surface effect, and tunneling effect, along with their potential utilization in traditional materials, electronic devices, energy storage devices, and other industries. Nanoparticles are nanomaterials with dimensions ranging from 1 to 100 nm. Nanomaterials with remarkable structural, mechanical, catalytic, optical, electrical, and magnetic characteristics that differ significantly from the bulk materials can be created. They can be categorized differently based on their qualities, forms, and sizes. There are different nanomaterials, including metals and ceramics are reinforced in the polymeric matrix to obtain composites with improved physical and chemical characteristics. A lot of research has been extensively reported on the impact of introducing nanomaterials into the polymeric matrix. The effect of nanomaterial selection, synthesis technique, grain size, and boundary structures on the mechanical characteristics of nanomaterials is presented in this chapter. Hybrid polymeric composites have undergone significant development and utilization for energy applications in recent times. However, future applications in the fields of engineering, industry, and medicine can be made possible by progressing further research on the molding technique of nanomaterials. Therefore, scientists and researchers put efforts into investigating the molding and fabrication technique as well as strengthening the process of an advanced, robust nanocomposite to fulfill the essential needs in future application. This chapter provides an overview of nanostructured materials along with composite preparation processes and discusses the effect that these approaches have on the thermomechanical performance of nanomaterial-based robust composites. However, future applications in the fields of engineering, industry, and medicine can be made possible by progressing further research on the molding technique of nanomaterials. As a result, scientists and researchers are investigating the molding and fabrication technique, as well as strengthening the process of an advanced robust nanocomposite to meet the critical needs in a future application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikzad M, Masood SH, Sbarski I (2011) Mater Des 32:3448

    Article  Google Scholar 

  2. Wang F, Zhou S, Yang M, Chen Z, Ran S (2018) Polymers 10:401

    Article  Google Scholar 

  3. Huang X, Zhi C (2016) Springer 10:978

    Google Scholar 

  4. Wu Q, Miao WS, Gao HJ, Hui D (2020) Nanotechnol Rev 9:259–273

    Article  Google Scholar 

  5. Zou B, Huang CZ, Wang J, Liu BQ (2006) Trans Tech Publications Ltd 315:154

    Google Scholar 

  6. Wang XH, Xu CH, Yi MD, Zhang HF (2011) Adv Mater Res 154:1319

    Article  Google Scholar 

  7. Wang JL, Meng LJ (2014) Appl Mech Mater 535:785

    Article  Google Scholar 

  8. Ghabban A, Zubaidi A B, Jafar M, Fakhri Z (2018) IOP ConfSer: Mater Sci Eng 454:012016

    Google Scholar 

  9. Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Constr Build Mater 123:15

    Article  Google Scholar 

  10. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807

    Article  Google Scholar 

  11. Abdel Karim R, Reda Y, Abdel-Fattah A (2020) J Electrochem Soc 167:037554

    Google Scholar 

  12. Maglia F, Tredici IG, Anselmi-Tamburini U (2013) J Eur Ceram Soc 33:1045

    Article  Google Scholar 

  13. Bag A, Lee NE (2019) J Mater Chem C 7:13367

    Article  Google Scholar 

  14. Kanatzidis MG, Poeppelmeier KR, Bobev S, Guloy AM, Hwu SJ, Lachgar A, Seshadri R (2008) Prog Solid State Ch 36:133

    Article  Google Scholar 

  15. Pal K, Asthana N, Aljabali AA, Bhardwaj SK, Kralj S, Penkova A, Gomes de Souza F (2021) Crit Rev Solid State Mater Sci 17

    Google Scholar 

  16. Bhoi NK, Singh H, Pratap S (2020) J Compos Mater 54:813

    Article  Google Scholar 

  17. Iqbal M, Usanase G, Oulmi K, Aberkane F, Bendaikha T, Fessi H, Elaissari A (2016) Mater Res Bul 79:97

    Article  Google Scholar 

  18. Sahay R, Reddy VJ, Ramakrishna S (2014) Int J Mech Eng 9:13

    Google Scholar 

  19. Patra R, Mohanty D, Nayak PK (2022) Polym Sci Ser B 7

    Google Scholar 

  20. Sahu AK, Satpathy SK, Rout SK (2020) Trans Electr Electron Mater 21:217

    Article  Google Scholar 

  21. Mallick P, Satpathy SK, Behera B (2022) Braz J Phys 52:187

    Article  Google Scholar 

  22. Wei Q, Fu Y, Zhang G, Yang D, Meng G, Sun S (2019) Nano Energy 55:234–259

    Article  Google Scholar 

  23. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Beilstein J Nanotechnol 9:1050

    Article  Google Scholar 

  24. Mallick P, Satpathy SK, Behera B (2022) Bull Mater Sci 45:198

    Article  Google Scholar 

  25. Satpathy SK, Sen S, Behera B (2017) J Mater Sci Mater Electron 28:9102

    Article  Google Scholar 

  26. Mallick P, Patra R, Mohanty D, Satpathy SK (2022) Sadhana 47:134

    Article  Google Scholar 

  27. Nasiri N, Clarke C (2019) Biosensors 9:43

    Article  Google Scholar 

  28. Mudedla SK, Singam EA, Vijay Sundar J, Pedersen MN, Murugan NA, Kongsted J, Subramanian V (2015) J PhysChem C 119:653

    Google Scholar 

  29. Siwick BJ, Kalinina O, Kumacheva E, Miller RD, Noolandi J (2001) J Appl Phys 90:5328

    Article  Google Scholar 

  30. Vaqueiro P, Powell AV (2010) J Mater Chem 20:9577

    Article  Google Scholar 

  31. Ozturk Z, Baykasoglu C, Kirca M (2016) Int J Hydrog Energy 41:6403

    Article  Google Scholar 

  32. Pryjmakova J, Kaimlova M, Hubacek T, Svorcik V, Siegel J (2020) Int J MolSci 21:2521

    Google Scholar 

  33. Jean-Gilles R, Soscia D, Sequeira S, Melfi M, Gadre A, Castracane J, Larse M (2010) J Nanotechnol Eng Med 1

    Google Scholar 

  34. Sharma S, Jaiswal S, Duffy B, Jaiswal AK (2019) Bioeng 6:26

    Google Scholar 

  35. Mohanty NK, Pradhan RN, Satpathy SK (2014) J Mater Sci Mater Electron 25:117

    Article  Google Scholar 

  36. Mohanty D, Satpathy SK, Behera B, Mohapatra RK (2020) Mater Today Proc 33:5226

    Article  Google Scholar 

  37. Siva Kumar M, Kumar S, Gouda K, Bhowmik S (2021) Polym Polym Compos 29:1551

    Google Scholar 

  38. Ganachari SV, Banapurmath NR, Salimath B, Yaradoddi JS, Shettar AS, Hunashyal AM, Hiremath GB (2017) Handbook of ecomaterials, p 83

    Google Scholar 

  39. Zhao X, Wei C, Gai Z, Yu S, Ren X (2020) Chem Pap 74:767

    Article  Google Scholar 

  40. Piszczek P, Radtke A (2018) Noble Precious Metals 187

    Google Scholar 

  41. Manawi YM, Samara A, Al-Ansari T, Atieh MA (2018) Mater 11:822

    Article  Google Scholar 

  42. Henini M (Ed.) (2012) Elsevier, Newnes

    Google Scholar 

  43. Morresi L (2013) Bussum: Bentham Science Publishers, p 81

    Google Scholar 

  44. Ishikawa Y, Shibata N, Fukatsu S (1996) Appl Phys Lett 68:2249

    Article  Google Scholar 

  45. Asghar M, Mahmood K, Raja MY, Hasan MA (2013) Adv Mater Res 622:919

    Google Scholar 

  46. Soopy AKK, Li Z, Tang T, Sun J, Xu B, Zhao C, Najar A (2021) Nanomater 11:126

    Article  Google Scholar 

  47. Fadaly E(2015) Master's thesis, Molecular beam epitaxy of catalyst-free InAs nanowires on Si

    Google Scholar 

  48. Rao BG, Mukherjee D, Reddy BM (2017) Nanostructures for novel therapy. Elsevier

    Google Scholar 

  49. Sumida K, Liang K, Reboul J, Ibarra IA, Furukawa S, Falcaro P (2017) Chem Mater 29:2626

    Article  Google Scholar 

  50. Ab Rahman Ismail, Padavettan Vejayakumaran (2012) J Nanomater 2012

    Google Scholar 

  51. Tan WK, Muto H, Kawamura G, Lockman Z, Matsuda A (2021) Nanomater 11:181

    Article  Google Scholar 

  52. Holliday S, Stanishevsky A (2004) Surf Coat Technol 188:741

    Article  Google Scholar 

  53. Özbay N, Şahin RY (2017) AIP Conf Proc 1809:020040

    Google Scholar 

  54. Benega MAG, Silva WM, Schnitzler MC, Andrade RJE, Ribeiro H (2021) Polym Test 98:107180

    Article  Google Scholar 

  55. Kigozi M, Ezealigo BN, Onwualu AP, Dzade NY (2021) Chemically Deposited nanocrystalline metal oxide thin films. Springer, Cham

    Google Scholar 

  56. Ozin GA, Hou K, Lotsch BV, Cademartiri L, Puzzo DP, Scotognella F, Ghadimi A, Thomson J (2009) Mater Today 12:12

    Article  Google Scholar 

  57. Arul A, Rana P, Das K, Pan I, Mandal D, Stewart A, Maity B, Ghosh S, Das P (2021) Nanoscale Adv 3:6176

    Article  Google Scholar 

  58. Lombardo D, Calandra P, Pasqua L, Magazù S (2020) Mater 13:1048

    Article  Google Scholar 

  59. Kajbafvala A, Bahmanpour H, Maneshian MH, Li M (2013)J Nanomater

    Google Scholar 

  60. Venugopal G, Kim SJ (2013)Advances in micro/nano electromechanical systems and fabrication technologies. IntechOpen

    Google Scholar 

  61. De Teresa JM (2020) Nanofabrication: nanolithography techniques and their applications. IOP Publishing

    Google Scholar 

  62. Li J, Zhang C, Liang R, Wang B (2008) Int J Prod Res 46:2087

    Article  Google Scholar 

  63. Abas FO, Abass RU (2018) MATEC Web of Conf 225:01021

    Article  Google Scholar 

  64. Xu C, Yi M, Zhang J, Fang B, Wei G (2012) Ceramic materials-progress in modern ceramics, IntechOpen

    Google Scholar 

  65. Karimzadeh A, Ayatollahi MR, Bushroa AR, Herliansyah MK (2014) Ceram Int 40:9159

    Article  Google Scholar 

  66. Acchar W, Cairo CAA, Chiberio P (2019) Compos Struct 225:111109

    Article  Google Scholar 

  67. Trombini V, Tonello KPS, Santos T, Bressiani JC, Bressiani AHDA (2012) Mater Sci Forum 727:597

    Article  Google Scholar 

  68. Wang D, Zhao J, Zhou Y, Chen X, Li A, Gong Z (2013) Comput Mater Sci 77:236

    Article  Google Scholar 

  69. Zhou T, Huang C (2015) Comput Mater Sci 104:177

    Article  Google Scholar 

  70. Khorshidi B, Biswas I, Ghosh T, Thundat T, Sadrzadeh M (2018) Sci Rep 8:10

    Article  Google Scholar 

  71. Zeng H, Wu J, Pei H, Zhang Y, Ye Y, Liao Y, Xie X (2021) Chem Eng J 405:126865

    Article  Google Scholar 

  72. Subhani T, Latif M, Ahmad I, Rakha SA, Ali N, Khurram AA (2015) Mater Des 87:436

    Article  Google Scholar 

  73. Chang HP, Liu HC, Tan CS (2015) Polymer 75:125

    Article  Google Scholar 

  74. Li W, Dichiara A, Bai J (2013) Compos Sci Technol 74:221

    Article  Google Scholar 

  75. Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Eur Polym J 49:3125

    Article  Google Scholar 

  76. Yasmin A, Luo JJ, Abot JL, Daniel IM (2006) Compos Sci Technol 66:2415

    Article  Google Scholar 

  77. Rafieian F, Shahedi M, Keramat J, Simonsen J (2014) J Food Sci 79:N100

    Article  Google Scholar 

  78. Dittrich B, Wartig KA, Mülhaupt R, Schartel B (2014) Polymers 6:2875

    Article  Google Scholar 

  79. Araby S, Saber N, Ma X, Kawashima N, Kang H, Shen H, Ma J (2015) Mater Des 65:690

    Article  Google Scholar 

  80. Güler Ö, Bağcı N (2020) J Mater Res Technol 9:6808

    Article  Google Scholar 

  81. Ajeesh G, Bhowmik S, Sivakumar V, Varshney L, Kumar V, Abraham M (2017) J Compos Mater 51:1057–1072

    Article  Google Scholar 

  82. Zhang X, Wen H, Wu Y (2017) Polymers 9:430

    Article  Google Scholar 

  83. Kulkarni HB, Tambe P, M Joshi G (2018) Compos Interfaces 25:381

    Google Scholar 

  84. Singh NP, Gupta VK, Singh AP (2019) Polymer 180:121724

    Article  Google Scholar 

  85. Szeluga U, Pusz S, Kumanek B, Olszowska K, Kobyliukh A, Trzebicka B (2021) Crit Rev Solid State Mater Sci 46:152

    Article  Google Scholar 

  86. Atif R, Shyha I, Inam F (2016) Polymers 8:281

    Article  Google Scholar 

  87. Jin H, Zhang Y, Wang C, Sun Y, Yuan Z, Pan Y, Cheng R (2014) J Therm Anal Calorim 117:773

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the support provided by Centurion University of Technology and Management, Odisha, India for carrying out the current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Moharana .

Editor information

Editors and Affiliations

Ethics declarations

The authors declared that no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallick, P., Satpathy, S.K., Moharana, S. (2023). Nanomaterials for Fabrication of Thermomechanical Robust Composite. In: Tiwari, S.K., Kumar, V., Thomas, S. (eds) Nanoparticles Reinforced Metal Nanocomposites. Springer, Singapore. https://doi.org/10.1007/978-981-19-9729-7_10

Download citation

Publish with us

Policies and ethics