Skip to main content
Log in

A Novel Approach to Enhance the Mechanical Strength and Electrical and Thermal Conductivity of Cu-GNP Nanocomposites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Copper/graphene nanoplatelet (GNP) nanocomposites were produced by a wet mixing method followed by a classical powder metallurgy technique. A qualitative evaluation of the structure of graphene after mixing indicated that wet mixing is an appropriate dispersion method. Thereafter, the effects of two post-processing techniques such as repressing–annealing and hot isostatic pressing (HIP) on density, interfacial bonding, hardness, and thermal and electrical conductivity of the nanocomposites were analyzed. Density evaluations showed that the relative density of specimens increased after the post-processing steps so that after HIPing almost full densification was achieved. The Vickers hardness of specimens increased considerably after the post-processing techniques. The thermal conductivity of pure copper was very low in the case of the as-sintered samples containing 2 to 3 pct porosity and increased considerably to a maximum value in the case of HIPed samples which contained only 0.1 to 0.2 pct porosity. Electrical conductivity measurements showed that by increasing the graphene content electrical conductivity decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Du, D. Lu, J. Qi, Y. Shen, L. Yin, Y. Wang, Z. Zheng, and T. Xiong. (2014) Heat dissipation performance of porous copper with elongated cylindrical pores. J. Mater. Sci. Technol. 30:934–938.

    Article  Google Scholar 

  2. J. Kováčik and Š. Emmer, “Thermal expansion of Cu/graphite composites : effect of copper coating,” Kov. Mater. 49, 411–416 (2011).

    Google Scholar 

  3. B. Chen, Q. Bi, J. Yang, Y. Xia, and J. Hao, “Tribology International Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites,” Tribol. Int. 41, 1145–1152 (2008).

    Article  Google Scholar 

  4. A. Saboori, M. Pavese, C. Badini, and P. Fino (2017) Microstructure and thermal conductivity of Al-Graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall. Sin. 30:675–687.

    Article  Google Scholar 

  5. M. Rashad, F. Pan, Y. Liu, X. Chen, and H. Lin. (2016) High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. J. Magnes. Alloy. 4:270–277.

    Article  Google Scholar 

  6. A. Saboori, M. Pavese, C. Badini, and P. Fino (2017) A novel Cu–GNPs nanocomposite with improved thermal and mechanical properties. Acta Metall. Sin. https://doi.org/10.1007/s40195-017-0643-y.

    Google Scholar 

  7. M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She. (2015) Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets,” Mater. Sci. Eng. A 630, 36–44.

    Article  Google Scholar 

  8. JR Davis (2001) Powder metallurgy: copper and copper alloys. In JR Davis (ed.) ASM Specialty Handbook. ASM International, Materials park.

    Google Scholar 

  9. R. N. Caron, Copper Alloys: Properties and Applications, Encycl. Mater. Sci. Technol., 2nd ed. (2001).

    Google Scholar 

  10. K. J. A. Kundig and J. G. Cowie., Mechanical Engineers’ Handbook : Materials and Mechanical Design, 3rd ed., M. Kutz, Ed. (John Wiley & Sons, Inc., 2006).

    Google Scholar 

  11. T. Varol and A. Canakci, “Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy,” Met. Mater. Int. 21, 704–712 (2015).

    Article  Google Scholar 

  12. T. Varol and A. Canakci, “The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy,” J. Alloys Compd. 649, 1066–1074 (2015).

    Article  Google Scholar 

  13. M. Rashad, F. Pan, M. Asif, and A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” J. Ind. Eng. Chem. 20, 4250–4255 (2014).

    Article  Google Scholar 

  14. L. Liu, M. Qing, Y. Wang, and S. Chen (2015) Defects in Graphene : Generation, Healing, and Their Effects on the Properties of Graphene : A Review,” J. Mater. Sci. Technol. 31, 599–606.

    Article  Google Scholar 

  15. M. Rashad, F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, and J. Mao (2015)Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem. 23, 243–250.

    Article  Google Scholar 

  16. A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino (2017)An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy. J. Mater. Eng. Perform. 26, 993–999.

    Article  Google Scholar 

  17. A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B 64, 1–13 (2001).

    Article  Google Scholar 

  18. T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, et al., “Uniaxial strain in graphene by Raman spectroscopy : G peak splitting, Grüneisen parameters, and sample orientation,” Phys. Rev. B 79, 1–8 (2009).

    Article  Google Scholar 

  19. R. Perez-Bustamante, D. Bolanos-Morales, J. Bonilla-Maetinez, and I. Estrada-Guel, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” J. Alloy. compd. 615, S578–S582 (2014).

    Article  Google Scholar 

  20. R. Pérez-Bustamante, C. D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S. A. Pérez-García, and R. Martínez-Sánchez, “Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling,” Mater.Sci. Eng. A 502, 159–163 (2009).

    Article  Google Scholar 

  21. M. Tabandeh-khorshid, J. B. Ferguson, B. F. Schultz, C. Kim, K. Cho, and P. K. Rohatgi (2016) Strengthening mechanisms of graphene- and Al2O3 -reinforced aluminum nanocomposites synthesized by room temperature milling. Mater. Des. 92, 79–87.

    Article  Google Scholar 

  22. K. Chu and C. C. Jia, “Enhanced strength in bulk graphene-copper composite,” Phys. Status Solidi A 211, 184–190 (2014).

    Article  Google Scholar 

  23. F. Akhtar, S. Javid, K. Ali, X. Du, and S. Guo, “Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites,” Mater. Charact. 60, 327–336 (2009).

    Article  Google Scholar 

  24. K. Rajkumar and S. Aravindan, “Tribological behavior of microwave processed copper – nanographite composites,” Tribiology Int. 57, 282–296 (2013).

    Article  Google Scholar 

  25. F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, and Q. Huang (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon N. Y. 96, 836–842.

    Article  Google Scholar 

  26. P. Goli, H. Ning, X. Li, C. Y. Lu, K. S. Novoselov, and A. A. Balandin, “Thermal properties of graphene–copper–graphene heterogeneous films,” NANO Lett. 14, 1497–1503 (2014).

    Article  Google Scholar 

  27. J. P. Tu, W. Rong, S. Y. Guo, and Y. Z. Yang, “Dry sliding wear behavior of in situ Cu – TiB 2 nanocomposites against medium carbon steel against medium carbon steel,” Wear 255, 832–835 (2003).

    Article  Google Scholar 

  28. A. Nadkarani: Dispersion strengthened metal composites. U.S. Patent No. 4,752,334. 1988.

  29. T. Varol and A. Canakci, “Effect of the CNT Content on Microstructure, Physical and Mechanical Properties of Cu-Based Electrical Contact Materials Produced by Flake Powder Metallurgy,” Arab. J. Sci. Eng. 40, 2711–2720 (2015).

    Article  Google Scholar 

  30. Claire Arnaud, Florence Lecouturier, David Mesguich, Nelson Ferreira,Geoffroy Chevallier, “High strength – High conductivity double-walled carbon nanotube – Copper composite wires,” Carbon N. Y. 96, 212–215 (2016).

    Article  Google Scholar 

  31. QHF Chen, Jiamin Ying, Yifei Wang, Shiyu Du, Zhaoping Liu (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842.

    Article  Google Scholar 

  32. S. F. Moustafa, S. A. El-Badry, A. M. Sanad, and B. Kieback, “Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders,” Wear 253, 699–710 (2002).

    Article  Google Scholar 

  33. S. F. Moustafa, S. A. El-Badry, and A. M. Sanad, “Effect of Graphite with and Without Copper Coating on Consolidation Behaviour and Sintering of Copper–Graphite Composite,” Powder Metall. 40, 201–206 (1997).

    Article  Google Scholar 

  34. G. C. Yao, Q. S. Mei, J. Y. Li, C. L. Li, Y. Ma, F. Chen, and M. Liu, “Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding,” Mater. Des. 110, 124–129 (2016).

    Article  Google Scholar 

  35. S. Zhao, Z. Zheng, Z. Huang, S. Dong, P. Luo, Z. Zhang, and Y. Wang, “Cu matrix composites reinforced with aligned carbon nanotubes : Mechanical, electrical and thermal properties,” Mater. Sci. Eng. A 675, 82–91 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Saboori.

Additional information

Manuscript submitted April 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saboori, A., Pavese, M., Badini, C. et al. A Novel Approach to Enhance the Mechanical Strength and Electrical and Thermal Conductivity of Cu-GNP Nanocomposites. Metall Mater Trans A 49, 333–345 (2018). https://doi.org/10.1007/s11661-017-4409-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4409-y

Navigation