Skip to main content
Log in

On the austenite stability of cryogenic Ni steels: microstructural effects: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Austenite stability is essentially important in improving the cryogenic toughness of cryogenic Ni steels and guiding the development of Ni-saving cryogenic steels. The austenite stability in the cryogenic Ni steels is influenced by many microstructure features, making it a complicated issue which is lack of a systematic discussion. In this article, the microstructural effects on the thermal and mechanical stability of austenite in the cryogenic Ni steels are reviewed and discussed. The thermal stability of austenite (TSA) will be enhanced by the enrichment of austenite-stabilizing elements in the austenite which decreases the martensite-start (Ms) temperature. The grain refinement enhances the TSA by synergistically increasing the nonchemical driving force for the martensite transformation and the concentrations of austenite-stabilizing elements in the austenite. The excessive increase in the volume fraction of austenite weakens the TSA by decreasing the concentrations of austenite-stabilizing elements in the austenite. The film austenite is usually thermally more stable than the block austenite owing to its higher concentrations of austenite-stabilizing elements. The mechanical stability of austenite (MSA) is also influenced by the concentrations of austenite-stabilizing elements which affect the Ms temperature. The reports on the effect of grain size of austenite on the MSA are inconsistent. Both negligible and important effects of the grain size of austenite on the MSA are analyzed. The grain orientation of austenite affects the MSA via changing the Schmid factor and the additional driving force for the martensite transformation. The orientation which yields a larger value of Schmid factor would exhibit a lower MSA. The MSA is affected by the matrix or the neighboring phase due to the stress and strain partitioning among austenite and other constituent phases. The dislocation multiplication could weaken the MSA by assisting the nucleation and growth of martensite embryo and enhance the MSA by hindering the motion of embryo/austenite interfaces when dislocation density is sufficiently large. Austenite with a combination of a high TSA and a moderate or high MSA is considered to be effective strategies to enhance cryogenic toughness of the cryogenic Ni steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced from [24] with permission from Elsevier

Figure 2

Reproduced from [18] with permission from Springer Nature

Figure 3

Reproduced from [50] with permission from Elsevier

Figure 4

Reproduced from [64] with permission from Taylor & Francis

Figure 5

Reproduced from [92] with permission from Elsevier

Figure 6

Reproduced from [103] with permission from Elsevier

Figure 7

Similar content being viewed by others

References

  1. Hoshino M, Saitoh N, Muraoka H, Saeki O (2004) Development of super-9% Ni steel plates with superior low-temperature toughness for LNG storage tanks. Nippon Steel Tech Rep 90:20–24

    Google Scholar 

  2. Nagashima M, Tsuchiy M, Asada M (2011) Reducing the economic risk of LNG tank construction under conditions of fluctuating resource prices. J Constr Eng Mater 137:382–391. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000305

    Article  Google Scholar 

  3. Hwang SK, Jin S, Morris JW (1975) A study of retained austenite in a fine-grained Fe–12Ni–0.25 Ti alloy. Metall Trans A 6:2015–2021. https://doi.org/10.1007/BF03161826

    Article  Google Scholar 

  4. Norström LÅ, Vingsbo O (1979) Influence of nickel on toughness and ductile–brittle transition in low-carbon martensite steels. Metal Sci 13:677–684. https://doi.org/10.1179/030634579790434321

    Article  Google Scholar 

  5. Hany S, Milochova M, Littrell K, Lorange R, Vogt JB, Abi-Aad E, Bychkov E (2018) Advanced characterization of cryogenic 9Ni steel using synchrotron radiation, neutron scattering and 57Fe Mössbauer spectroscopy. Mater Des 46:219–227. https://doi.org/10.1016/j.matdes.2018.03.024

    Article  CAS  Google Scholar 

  6. Cao HW, Luo XH, Zhan GF, Liu S (2018) Effect of Mn content on microstructure and cryogenic mechanical properties of a 7% Ni steel. Acta Metall Sin-Engl Lett 31:699–705. https://doi.org/10.1007/s40195-018-0700-1

    Article  CAS  Google Scholar 

  7. Kamo T, Arimochi K, Kawabata T, et al (2011) Development of 7%Ni-TMCP steel plate for LNG storage tanks. In: International conference on offshore mechanics and Arctic engineering, Rotterdam, Netherlands. https://doi.org/https://doi.org/10.1115/OMAE2011-49149

  8. Hou W, Liu QD, Gu JF (2020) Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7 Ni steel. Mater Sci Eng A 780:1–9. https://doi.org/10.1016/j.msea.2020.139186

    Article  CAS  Google Scholar 

  9. Xiong T, Xu G, Yuan Q, Hu HJ, Tian JY (2019) Effects of initial austenite grain size on microstructure and mechanical properties of 5% nickel cryogenic steel. Metall Micro Anal 8:241–248. https://doi.org/10.1007/s13632-019-00523-6

    Article  CAS  Google Scholar 

  10. Wu SJ, Sun GJ, Ma QS, Shen QY, Xu L (2013) Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel. J Mater Process Technol 213:120–128. https://doi.org/10.1016/j.jmatprotec.2012.08.005

    Article  CAS  Google Scholar 

  11. Marshall CW, Hehemann RF, Troiano AR (1962) The characteristics of 9% nickel low carbon steels. Trans ASM 55:135–148.

    Google Scholar 

  12. Kim JI, Morris JW (1980) On the scavenging effect of precipitated austenite in a low carbon Fe–5.5 Ni alloy. Metall Trans A 11:1401–1406. https://doi.org/10.1007/BF02653495

    Article  Google Scholar 

  13. Morris JW (2011) On the ductile-brittle transition in lath martensitic steel. ISIJ Int 51:1569–1575. https://doi.org/10.2355/isijinternational.51.1569

    Article  CAS  Google Scholar 

  14. Nakanishi D, Kawabata T, Aihara S (2018) Effect of dispersed retained γ-Fe on brittle crack arrest toughness in 9% Ni steel in cryogenic temperatures. Mater Sci Eng A 723:238–246. https://doi.org/10.1016/j.msea.2018.03.056

    Article  CAS  Google Scholar 

  15. Rack HJ, Kalish D (1974) The strength, fracture toughness, and low cycle fatigue behavior of 17–4 PH stainless steel. Metall Trans 5:1595–1605. https://doi.org/10.1007/BF02646331

    Article  CAS  Google Scholar 

  16. Ahlquist CN (1975) On the interaction of cleavage cracks with second phase particles. Acta Metall 23:239–243. https://doi.org/10.1016/0001-6160(75)90189-3

    Article  CAS  Google Scholar 

  17. Qi XY, Du LX, Dong Y, Misra RDK, Du Y, Wu HY, Gao XH (2019) Fracture toughness behavior of low-C medium-Mn high-strength steel with submicron-scale laminated microstructure of tempered martensite and reversed austenite. J Mater Sci 54:12095–12105. https://doi.org/10.1007/s10853-019-03776-2

    Article  CAS  Google Scholar 

  18. Fultz B, Kim JI, Kim YH, Kim HJ, Fior GO, Morris JW (1985) The stability of precipitated austenite and the toughness of 9Ni steel. Metall Trans A 16:2237–2249. https://doi.org/10.1007/BF02670423

    Article  Google Scholar 

  19. Kim JI, Kim HJ, Morris JW (1984) The role of the constituent phases in determining the low temperature toughness of 5.5 Ni cryogenic steel. Metall Trans A 15:2213–2219. https://doi.org/10.1007/BF02647104

    Article  Google Scholar 

  20. Frear D, Morris JW (1986) A study of the effect of precipitated austenite on the fracture of a ferritic cryogenic steel. Metall Trans A 17:243–252. https://doi.org/10.1007/BF02643900

    Article  Google Scholar 

  21. Zhao XQ, Pan T, Wang QF, Su H, Yang CF, Ynag QX (2011) Effect of tempering temperature on microstructure and mechanical properties of steel containing Ni of 9%. J Iron Steel Res Int 18:47–51. https://doi.org/10.1016/S1006-706X(11)60064-2

    Article  CAS  Google Scholar 

  22. Shan GB, Chen YZ, Li YJ et al (2020) High temperature creep resistance of a thermally stable nanocrystalline Fe–5 at.% Zr steel. Scr Mater 179:1–5. https://doi.org/10.1016/j.scriptamat.2019.12.036

    Article  CAS  Google Scholar 

  23. Chang GM (1983) Austenite stability and its influence on mechanical properties of 18-8 stainless steel at cryogenic temperatures. MS thesis, University of California. https://escholarship.org/uc/item/22w5w42w

  24. Shin HC, Ha TK, Chang YW (2001) Kinetics of deformation induced martensitic transformation in a 304 stainless steel. Scr Mater 45:823–829. https://doi.org/10.1016/S1359-6462(01)01101-0

    Article  CAS  Google Scholar 

  25. van Bohemen SMC, Morsdorf L (2017) Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size. Acta Mater 125:401–415. https://doi.org/10.1016/j.actamat.2016.12.029

    Article  CAS  Google Scholar 

  26. Kaufman L, Cohen M (1958) Thermodynamics and kinetics of martensitic transformations. Prog Metal Phys 7:165–246. https://doi.org/10.1016/0502-8205(58)90005-4

    Article  CAS  Google Scholar 

  27. Luo Q, Chen HC, Chen W, Wang CC, Xu W, Li Q (2020) Thermodynamic prediction of martensitic transformation temperature in Fe–Ni–C system. Scr Mater 187:413–417. https://doi.org/10.1016/j.scriptamat.2020.06.062

    Article  CAS  Google Scholar 

  28. Ishida K (1995) Calculation of the effect of alloying elements on the Ms temperature in steels. J Alloys Compd 220:126–131. https://doi.org/10.1016/0925-8388(94)06002-9

    Article  CAS  Google Scholar 

  29. Hsu TY (1985) An approximate approach for the calculation of Ms in iron-base alloys. J Mater Sci 20:23–31. https://doi.org/10.1007/BF00555894

    Article  Google Scholar 

  30. Bhadeshia HKDH (1981) Thermodynamic extrapolation and martensite-start temperature of substitutionally alloyed steels. Metal Sci 15:178–180. https://doi.org/10.1179/030634581790426697

    Article  CAS  Google Scholar 

  31. Ghosh G, Olson GB (1994) Kinetics of FCC→ BCC heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metall Mater 42:3361–3370. https://doi.org/10.1016/0956-7151(94)90468-5

    Article  CAS  Google Scholar 

  32. Ghosh G, Olson GB (2001) Computational thermodynamics and the kinetics of martensitic transformation. J Phase Equilib 22:199–207. https://doi.org/10.1361/105497101770338653

    Article  CAS  Google Scholar 

  33. Jimenez-Melero E, van Dijk NH, Zhao L, Sietsma J, Offerman SE, Wright JP, van der Zwaag S (2009) The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels. Acta Mater 57:533–543. https://doi.org/10.1016/j.actamat.2008.09.040

    Article  CAS  Google Scholar 

  34. Hsu TY, Chang HB, Luo SF (1983) On thermodynamic calculation of Ms and on driving force for martensitic transformations in Fe–C. J Mater Sci 18:3206–3212. https://doi.org/10.1007/BF00544144

    Article  CAS  Google Scholar 

  35. Liu C, Zhao ZB, Northwood DO, Liu YX (2001) A new empirical formula for the calculation of Ms temperatures in pure iron and super-low carbon alloy steels. J Mater Process Technol 113:556–562. https://doi.org/10.1016/S0924-0136(01)00625-2

    Article  CAS  Google Scholar 

  36. Nakada N, Syarif J, Tsuchiyama T, Takaki S (2004) Improvement of strength–ductility balance by copper addition in 9% Ni steels. Mater Sci Eng A 374:137–144. https://doi.org/10.1016/j.msea.2004.01.048

    Article  CAS  Google Scholar 

  37. van Bohemen SMC (2012) Bainite and martensite start temperature calculated with exponential carbon dependence. Mater Sci Technol Lond 28:487–495. https://doi.org/10.1179/1743284711Y.0000000097

    Article  CAS  Google Scholar 

  38. Dong H, Chen YZ, Wang K, Shan GB, Zhang ZR, Huang K, Liu F (2020) In situ observation of remelting induced anomalous eutectic structure formation in an undercooled Ni–18.7 at.% Sn eutectic alloy. Scr Mater 177:123–127. https://doi.org/10.1016/j.scriptamat.2019.10.019

    Article  CAS  Google Scholar 

  39. Cao HW, Luo XH, Zhan GF, Liu S (2017) Effect of intercritical quenching on the microstructure and cryogenic mechanical properties of a 7 Pct Ni steel. Metall Mater Trans A 48:4403–4410. https://doi.org/10.1007/s11661-017-4200-0

    Article  CAS  Google Scholar 

  40. Jain D, Isheim D, Zhang XJ, Ghosh D, Seidman DN (2017) Thermally stable Ni-rich austenite formed utilizing multistep intercritical heat treatment in a low-carbon 10 Wt Pct Ni martensitic steel. Metall Mater Trans A 48A:3642–3654. https://doi.org/10.1007/s11661-017-4146-2

    Article  CAS  Google Scholar 

  41. Dai ZB, Chen H, Ding R, Liu Q, Zhang C, Yang ZG, van der Zwaag S (2021) Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Mater Sci Eng R 143:1–39. https://doi.org/10.1016/j.mser.2020.100590

    Article  Google Scholar 

  42. Baik SI, Gupta RK, Kumar KS, Seidman DN (2020) Temperature increases and thermoplastic microstructural evolution in adiabatic shear bands in a high-strength and high-toughness 10 wt.% Ni steel. Acta Mater 205:1–15. https://doi.org/10.1016/j.actamat.2020.116568

    Article  CAS  Google Scholar 

  43. Moor ED, Matlock DK, Speer JG, Merwin MJ (2011) Austenite stabilization through manganese enrichment. Scr Mater 64:185–188. https://doi.org/10.1016/j.scriptamat.2010.09.040

    Article  CAS  Google Scholar 

  44. Kim JI, Morris JW (1981) The composition of precipitated austenite in 5.5 Ni steel. Metall Trans A 12:1957–1963. https://doi.org/10.1007/BF02643809

    Article  CAS  Google Scholar 

  45. Chen QY, Ren JK, Xie ZL, Zhang WN, Chen J, Liu ZY (2020) Correlation between reversed austenite and mechanical properties in a low Ni steel treated by ultra-fast cooling, intercritical quenching and tempering. J Mater Sci 55:1840–1853. https://doi.org/10.1007/s10853-019-04029-y

    Article  CAS  Google Scholar 

  46. Harding I, Mouton I, Gault B, Raabe D, Kumar KS (2019) Carbon partitioning and microstructure evolution during tempering of an Fe–Ni–C steel. Scr Mater 172:38–42. https://doi.org/10.1016/j.scriptamat.2019.06.036

    Article  CAS  Google Scholar 

  47. Podder AS, Lonardelli I, Molinari A, Bhadeshia HKDH (2011) Thermal stability of retained austenite in bainitic steel: an in situ study. Proc R Soc A 467:3141–3156. https://doi.org/10.1098/rspa.2011.0212

    Article  CAS  Google Scholar 

  48. Yang YH, Cai QW, Tang D, Wu HB (2010) Precipitation and stability of reversed austenite in 9Ni steel. Int J Miner Metall Mater 17:587–595. https://doi.org/10.1007/s12613-010-0361-1

    Article  CAS  Google Scholar 

  49. Lee SL, Lee YK (2005) Effect of austenite grain size on martensitic transformation of a low alloy steel. Mater Sci Forum 475:3169–3172. https://doi.org/10.4028/www.scientific.net/MSF.475-479.3169

    Article  Google Scholar 

  50. Yang HS, Bhadeshia HKDH (2009) Austenite grain size and the martensite-start temperature. Scr Mater 60:493–495. https://doi.org/10.1016/j.scriptamat.2008.11.043

    Article  CAS  Google Scholar 

  51. García-Junceda A, Capdevila C, Caballero FG, de Andrés CG (2008) Dependence of martensite start temperature on fine austenite grain size. Scr Mater 58:134–137. https://doi.org/10.1016/j.scriptamat.2007.09.017

    Article  CAS  Google Scholar 

  52. Matsuoka Y, Iwasaki T, Nakada N, Tsuchiyama T, Takaki S (2013) Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ Int 53:1224–1230. https://doi.org/10.2355/isijinternational.53.1224

    Article  CAS  Google Scholar 

  53. Takaki S, Fukunaga K, Syarif J, Tsuchiyama T (2004) Effect of grain refinement on thermal stability of metastable austenitic steel. Mater Trans 45:2245–2251. https://doi.org/10.2320/matertrans.45.2245

    Article  CAS  Google Scholar 

  54. Cai ZH, Ding H, Misra RDK, Ying ZY (2015) Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater 84:229–236. https://doi.org/10.1016/j.actamat.2014.10.052

    Article  CAS  Google Scholar 

  55. Zou Y, Xu YB, Hu ZP et al (2016) Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate. Mater Sci Eng A 675:153–163. https://doi.org/10.1016/j.msea.2016.07.104

    Article  CAS  Google Scholar 

  56. Misra RDK, Wan XL, Challa VSA, Somani MC, Murr LE (2015) Relationship of grain size and deformation mechanism to the fracture behavior in high strength–high ductility nanostructured austenitic stainless steel. Mater Sci Eng A 626:41–50. https://doi.org/10.1016/j.msea.2014.12.052

    Article  CAS  Google Scholar 

  57. Wang JJ, van Der Zwaag S (2001) Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metall Mater Trans A 32:1527–1539. https://doi.org/10.1007/s11661-001-0240-5

    Article  Google Scholar 

  58. Jimenez-Melero E, van Dijk NH, Zhao L, Sietsma J, Offerman SE, Wright JP, van Der Zwaag S (2007) Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr Mater 56:421–424. https://doi.org/10.1016/j.scriptamat.2006.10.041

    Article  CAS  Google Scholar 

  59. Wu SP, Wang DP, Di XJ, Li CN, Zhang Z, Zhou ZJ, Liu XJ (2019) Strength-toughness improvement of martensite-austenite dual phase deposited metals after austenite reversed treatment with short holding time. Mater Sci Eng A 755:57–65. https://doi.org/10.1016/j.actamat.2013.12.038

    Article  CAS  Google Scholar 

  60. Qi XY, Du LX, Hu J, Misra RDK (2019) Effect of austenite stability on toughness, ductility, and work-hardening of medium-Mn steel. Mater Sci Technol Lond 35(17):2134–2142. https://doi.org/10.1080/02670836.2018.1522088

    Article  CAS  Google Scholar 

  61. Lee CG, Kim SJ, Lee TH, Lee S (2004) Effects of volume fraction and stability of retained austenite on formability in a 0.1C–1.5Si–1.5Mn–0.5Cu TRIP-aided cold-rolled steel sheet. Mater Sci Eng A 371:16–23. https://doi.org/10.1016/S0921-5093(03)00035-2

    Article  CAS  Google Scholar 

  62. Chen J, Zhan WN, Liu ZY, Wang GD (2017) The role of retained austenite on the mechanical properties of a low carbon 3Mn–1.5 Ni steel. Metall Mater Trans A 48:5849–5859. https://doi.org/10.1007/s11661-017-4362-9

    Article  CAS  Google Scholar 

  63. Chen J, Lv MY, Liu ZY, Wang GD (2016) Influence of heat treatments on the microstructural evolution and resultant mechanical properties in a low carbon medium Mn heavy steel plate. Metall Mater Trans A 47:2300–2312. https://doi.org/10.1007/s11661-016-3378-x

    Article  CAS  Google Scholar 

  64. Sugimoto KI (2009) Fracture strength and toughness of ultra high strength TRIP aided steels. Mater Sci Technol Lond 25:1108–1117. https://doi.org/10.1179/174328409X453307

    Article  CAS  Google Scholar 

  65. Morito S, Oh-Ishi K, Hono K, Ohba T (2011) Carbon enrichment in retained austenite films in low carbon lath martensite steel. ISIJ Int 51:200–1202. https://doi.org/10.2355/isijinternational.51.1200

    Article  Google Scholar 

  66. Ding R, Tang D, Zhao AM (2014) A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel. Scr Mater 88:21–24. https://doi.org/10.1016/j.scriptamat.2014.06.014

    Article  CAS  Google Scholar 

  67. Kim JI, Syn CK, Morris JW (1983) Microstructural sources of toughness in QLT-Treated 5.5Ni cryogenic steel. Metall Trans A 14:93–103. https://doi.org/10.1007/BF02643742

    Article  CAS  Google Scholar 

  68. Wang M, Liu ZY (2017) Effects of ultra-fast cooling after hot rolling and intercritical treatment on microstructure and cryogenic toughness of 3.5%Ni steel. J Mater Eng Perform 26:1–9. https://doi.org/10.1007/s11665-017-2735-2

    Article  CAS  Google Scholar 

  69. Zhao XQ, Pan T, Wang QF, Su H, Yang CF, Yang QX, Zhang YQ (2007) Effect of intercritical quenching on reversed austenite formation and cryogenic toughness in QLT-processed 9% Ni steel. J Iron Steel Res Int 14:240–244. https://doi.org/10.1016/S1006-706X(08)60086-2

    Article  Google Scholar 

  70. Yi HL, Chen P, Bhadeshia HKDH (2014) Optimizing the morphology and stability of retained austenite in a δ-TRIP steel. Metall Mater Trans A 45:3512–3518. https://doi.org/10.1007/s11661-014-2267-4

    Article  CAS  Google Scholar 

  71. Caballero FG, García-Mateo C, Chao J, Santofimia MJ, Capdevila C, de Andrés CG (2008) Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels. ISIJ Int 48:1256–1262. https://doi.org/10.2355/isijinternational.48.1256

    Article  CAS  Google Scholar 

  72. Bhadeshia HKDH, Edmonds D (1983) Bainite in silicon steels: new composition–property approach part 1. Metal Sci 17:411–419. https://doi.org/10.1179/030634583790420600

    Article  CAS  Google Scholar 

  73. Takahashi M, Bhadeshia HKDH (1991) A model for the microstructure of some advanced bainitic steels. Mater Trans JIM 32:689–696. https://doi.org/10.2320/matertrans1989.32.689

    Article  CAS  Google Scholar 

  74. Bhadeshia HKDH, Waugh AR (1982) Bainite: an atom-probe study of the incomplete reaction phenomenon. Acta Metall 30:775–784. https://doi.org/10.1016/0001-6160(82)90075-X

    Article  CAS  Google Scholar 

  75. Sugimoto KI, Misu M, Kobayashi M, Shirasawa H (1993) Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP-aided dual-phase steel sheet. ISIJ Int 33:775–782. https://doi.org/10.2355/isijinternational.33.775

    Article  CAS  Google Scholar 

  76. Xiong XC, Chen B, Huang MX, Wang JF, Wang L (2013) The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr Mater 68:321–324. https://doi.org/10.1016/j.scriptamat.2012.11.003

    Article  CAS  Google Scholar 

  77. Sugimoto K, Mukherjee M (2017) TRIP aided and complex phase steels. In: Rana R, Singh SB (eds) Automotive steels: design, metallurgy, processing and applications. Woodhead Publishing, Cambridge, pp 217–257. https://doi.org/10.1016/C2015-0-00236-2

    Chapter  Google Scholar 

  78. Sakuma Y, Matlock DK, Krauss G (1992) Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part II. effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation. Metall Trans A 23:1233–1241. https://doi.org/10.1007/BF02665054

    Article  Google Scholar 

  79. Zhou TP, Wang CY, Wang C, Cao WQ, Chen ZJ (2020) Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel. Mater Sci Eng A 798:1–9. https://doi.org/10.1016/j.msea.2020.140147

    Article  CAS  Google Scholar 

  80. Fultz B, Morris JW (1985) The mechanical stability of precipitated austenite in 9Ni steel. Metall Trans A 16:2251–2256. https://doi.org/10.1007/BF02670424

    Article  Google Scholar 

  81. Blondé R, Jimenez-Melero E, Zhao L, Wright JP, Brück E, van der Zwaag S, van Dijk NH (2014) Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading. Mater Sci Eng A 618:280–287. https://doi.org/10.1016/j.msea.2014.09.008

    Article  CAS  Google Scholar 

  82. Patel JR, Cohen M (1953) Criterion for the action of applied stress in the martensitic transformation. Acta Metall 1:531–538. https://doi.org/10.1016/0001-6160(53)90083-2

    Article  CAS  Google Scholar 

  83. Blondé R, Jimenez-Melero E, Zhao L, Wright JP, Brück E, van der Zwaag S, van Dijk NH (2012) High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Mater 60:565–577. https://doi.org/10.1016/j.actamat.2011.10.019

    Article  CAS  Google Scholar 

  84. Chen SH, Zhao MJ, Li XY, Rong LJ (2012) Compression stability of reversed austenite in 9Ni steel. J Mater Sci Technol 6:558–561. https://doi.org/10.1016/S1005-0302(12)60097-8

    Article  Google Scholar 

  85. Ryu JH, Kim DI, Kim HS, Bhadeshia HKDH, Suh DW (2010) Strain partitioning and mechanical stability of retained austenite. Scr Mater 63:297–299. https://doi.org/10.1016/j.scriptamat.2010.04.020

    Article  CAS  Google Scholar 

  86. Song CH, Yu H, Lu J, Zhou T, Yang SF (2018) Stress partitioning among ferrite, martensite and retained austenite of a TRIP-assisted multiphase steel: an in-situ high-energy X-ray diffraction study. Mater Sci Eng A 726:1–9. https://doi.org/10.1016/j.msea.2018.04.066

    Article  CAS  Google Scholar 

  87. He SH, He BB, Zhu KY, Ding R, Chen H, Huang MX (2019) Revealing the role of dislocations on the stability of retained austenite in a tempered bainite. Scr Mater 168:23–27. https://doi.org/10.1016/j.scriptamat.2019.04.019

    Article  CAS  Google Scholar 

  88. Jacques PJ, Delannay F, Ladrière J (2001) On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Mater Trans A 32:2759–2768. https://doi.org/10.1007/s11661-001-1027-4

    Article  Google Scholar 

  89. Nakada N, Ishibashi Y, Tsuchiyama T, Takaki T (2016) Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation. Acta Mater 110:95–102. https://doi.org/10.1016/j.actamat.2016.03.048

    Article  CAS  Google Scholar 

  90. He BB (2020) On the factors governing austenite stability: intrinsic versus extrinsic. Materials 13:1–31. https://doi.org/10.3390/ma13153440

    Article  CAS  Google Scholar 

  91. Olson GB, Cohen M (1972) A mechanism for the strain-induced nucleation of martensitic transformations. J Less-Common Metals 28:107–118. https://doi.org/10.1016/0022-5088(72)90173-7

    Article  CAS  Google Scholar 

  92. He BB, Xu W, Huang MX (2014) Increase of martensite start temperature after small deformation of austenite. Mater Sci Eng A 609:141–146. https://doi.org/10.1016/j.msea.2014.04.108

    Article  CAS  Google Scholar 

  93. Wang HS, Yang JR, Bhadeshia HKDH (2005) Characterisation of severely deformed austenitic stainless steel wire. Mater Sci Technol Lond 21:1323–1328. https://doi.org/10.1179/174328405X63980

    Article  CAS  Google Scholar 

  94. Koga N, Nameki T, Umezawa O, Tschan V, Weiss KP (2020) Tensile properties and deformation behavior of ferrite and austenite duplex stainless steel at cryogenic temperatures. Mater Sci Eng A 801:1–8. https://doi.org/10.1016/j.msea.2020.140442

    Article  CAS  Google Scholar 

  95. Cina B (1954) Effect of cold work on the gamma to alpha transformation in some Fe–Ni–Cr alloys. J Iron Steel Inst 177:406–422

    Google Scholar 

  96. Strife JR, Passoja DE (1980) The effect of heat treatment on microstructure and cryogenic fracture properties in 5Ni and 9Ni steel. Metall Trans A 11:1341–1350. https://doi.org/10.1007/BF02653488

    Article  Google Scholar 

  97. Barrick EJ, Jain D, Dupont JN, Seidman DN (2017) Effects of heating and cooling rates on phase transformations in 10 wt pct Ni steel and their application to gas tungsten arc welding. Metall Mater Trans A 48:5890–5910. https://doi.org/10.1007/s11661-017-4379-0

    Article  CAS  Google Scholar 

  98. Harding I, Mouton I, Gault B, Kumar KS (2020) Microstructural evolution in an Fe–10Ni–0.1 C steel during heat treatment and high strain-rate deformation. Metall Mater Trans A 51:5056–5076. https://doi.org/10.1007/s11661-020-05911-0

    Article  CAS  Google Scholar 

  99. Meyers MA, Chawla KK (2008) Mechanical behavior of materials, 2nd edn. Cambridge University Press, New York. https://doi.org/10.1108/aeat.2009.12781bae.001

    Book  Google Scholar 

  100. Morris JW, Li CS, Guo Z (2003) The nature and consequences of coherent transformations in steel. ISIJ Int 43:410–419. https://doi.org/10.2355/isijinternational.43.410

    Article  CAS  Google Scholar 

  101. Morris JW (2008) Comments on the microstructure and properties of ultrafine grained steel. ISIJ Int 48:1063–1070. https://doi.org/10.2355/isijinternational.48.1063

    Article  CAS  Google Scholar 

  102. Inoue T, Yin FX, Kimura Y, Tsuzaki K, Ochiai S (2010) Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling. Metall Mater Trans A 41:341–355. https://doi.org/10.1007/s11661-009-0093-x

    Article  CAS  Google Scholar 

  103. Shen XJ, Tang S, Chen J, Liu ZY, Misra RDK, Wang GD (2017) Grain refinement in surface layers through deformation-induced ferrite transformation in microalloyed steel plate. Mater Des 113:137–141. https://doi.org/10.1016/j.matdes.2016.09.097

    Article  CAS  Google Scholar 

  104. Han J, Da Silva AK, Ponge D, Raabe D, Lee SM, Lee YK, Lee SI, Hwang B (2017) The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater 122:199–206. https://doi.org/10.1016/j.actamat.2016.09.048

    Article  CAS  Google Scholar 

  105. Morris JW, Guo Z, Krenn CR, Kim YH (2001) The limits of strength and toughness in steel. ISIJ Int 41:599–611. https://doi.org/10.2355/isijinternational.41.599

    Article  CAS  Google Scholar 

  106. Scheid A, Félix LM, Martinazzi D, Renck T, Kwietniewski CEF (2016) The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels. Mater Sci Eng A 661:96–104. https://doi.org/10.1016/j.msea.2016.03.019

    Article  CAS  Google Scholar 

  107. Jin S, Hwang SK, Morris JW (1975) The effect of grain size and retained austenite on the ductile-brittle transition of a titanium-gettered iron alloy. Metall Trans A 6:1721–1726. https://doi.org/10.1007/BF02642299

    Article  Google Scholar 

  108. Cao HW, Luo XH, Zhan GF (2018) Liu S (2018) Influence of Nb content on microstructure and mechanical properties of a 7% Ni steel. Acta Metall Sin-Engl Lett 31:975–982. https://doi.org/10.1007/s40195-018-0743-3

    Article  CAS  Google Scholar 

  109. Shen DD, Song SH, Yuan ZX, Weng LQ (2005) Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr–Mo low-alloy steel. Mater Sci Eng A 394:53–59. https://doi.org/10.1016/j.msea.2004.10.036

    Article  CAS  Google Scholar 

  110. Wu J, Song SH, Weng LQ, Xi TH, Yuan ZX (2008) An Auger electron spectroscopy study of phosphorus and molybdenum grain boundary segregation in a 2.25Cr1Mo steel. Mater Charact 59:261–265. https://doi.org/10.1016/j.matchar.2007.01.003

    Article  CAS  Google Scholar 

  111. Kim BJ, Kasada R, Kimura A, Tanigawa T (2011) Effects of cold work and phosphorous on the ductile to brittle transition behavior of F82H steels. J Nucl Mater 417:135–139. https://doi.org/10.1016/j.jnucmat.2011.01.099

    Article  CAS  Google Scholar 

  112. Kadoi K, Nakata Y, Inoue H, Saruwatari S (2020) Relationship between solidification sequence and toughness of carbon steel weld metal. Mater Charact 165:1–9. https://doi.org/10.1016/j.matchar.2020.110402

    Article  CAS  Google Scholar 

  113. Krawczyk J, Pacyna J, Bała P (2015) Fracture toughness of steels with nickel content in respect of carbide morphology. Mater Sci Technol Lond 31:795–802. https://doi.org/10.1179/1743284715Y.0000000023

    Article  CAS  Google Scholar 

  114. Krawczyk J, Bała P, Pacyna J (2010) The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni. J Microsc 237:411–415. https://doi.org/10.1111/j.1365-2818.2009.03275.x

    Article  CAS  Google Scholar 

  115. Arsenault R (1967) The double-kink model for low-temperature deformation of BCC metals and solid solutions. Acta Metall 15:501–511. https://doi.org/10.1016/0001-6160(67)90083-1

    Article  CAS  Google Scholar 

  116. Maeno K, Tanaka M, Yoshimura N, Shirahata H, Ushioda K, Higashida K (2012) Change in dislocation mobility with Ni content in ferritic steels and its effect on brittle-to-ductile transition. Tetsu to Hagane 98:667–674. https://doi.org/10.2355/tetsutohagane.98.667

    Article  CAS  Google Scholar 

  117. Wang BX, Lian JB (2014) Effect of microstructure on low-temperature toughness of a low carbon Nb–V–Ti microalloyed pipeline steel. Mater Sci Eng A 592:50–56. https://doi.org/10.1016/j.msea.2013.10.089

    Article  CAS  Google Scholar 

  118. Sung HK, Shin SY, Hwang B, Lee CG, Lee S (2013) Effects of cooling conditions on microstructure, tensile properties, and Charpy impact toughness of low-carbon high-strength bainitic steels. Metall Mater Trans A 44:294–302. https://doi.org/10.1007/s11661-012-1372-5

    Article  CAS  Google Scholar 

  119. Lu J, Yu H, Yang SF (2020) Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution. Mater Sci Eng A 803:1–13. https://doi.org/10.1016/j.msea.2020.140493

    Article  CAS  Google Scholar 

  120. Chen QY, Zhang WN, Xie ZL, Ren JK, Chen J, Liu ZY (2020) Influence of intercritical temperature on the microstructure and mechanical properties of 6.5 Pct Ni steel processed by ultra-fast cooling, intercritical quenching and tempering. Metall Mater Trans A 51:3030–3041. https://doi.org/10.1007/s11661-020-05730-3

    Article  CAS  Google Scholar 

  121. Isheim D, Hunter AH, Zhang XJ, Seidman DN (2013) Nanoscale analyses of high-nickel concentration martensitic high-strength steels. Metall Mater Trans A 44:3046–3059. https://doi.org/10.1007/s11661-013-1670-6

    Article  CAS  Google Scholar 

  122. Liu QD, Wen HM, Zhang H, Gu JF, Li CW, Lavernia EJ (2016) Effect of multistage heat treatment on microstructure and mechanical properties of high-strength low-alloy steel. Metall Mater Trans A 47:1960–1974. https://doi.org/10.1007/s11661-016-3389-7

    Article  CAS  Google Scholar 

  123. Kinney CC, Pytlewski KR, Khachaturyan AG, Morris JW (2014) The microstructure of lath martensite in quenched 9Ni steel. Acta Mater 69:372–385. https://doi.org/10.1016/j.actamat.2014.01.058

    Article  CAS  Google Scholar 

  124. Kim KJ, Schwartz LH (1978) On the effects of intercritical tempering on the impact energy of Fe–9Ni–0.1C. Mater Sci Eng 33:5–20. https://doi.org/10.1016/0025-5416(78)90149-0

    Article  CAS  Google Scholar 

  125. Zhou Q, Qian LH, Tan J, Meng JY, Zhang FC (2013) Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels. Mater Sci Eng A 578:370–376. https://doi.org/10.1016/j.msea.2013.04.096

    Article  CAS  Google Scholar 

  126. Wang M, Liu ZY, Li CG (2017) Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels. Acta Metall Sin-Engl Lett 30:238–249. https://doi.org/10.1007/s40195-016-0496-9

    Article  CAS  Google Scholar 

  127. Morris JW, Kinney C, Pytlewski K, Adachi Y (2013) Microstructure and cleavage in lath martensitic steels. Sci Technol Adv Mater 14:1–9. https://doi.org/10.1088/1468-6996/14/1/014208

    Article  CAS  Google Scholar 

  128. Haidemenopoulos G, Aravas N, Bellas I (2014) Kinetics of strain-induced transformation of dispersed austenite in low-alloy TRIP steels. Mater Sci Eng A 615:416–423. https://doi.org/10.1016/j.msea.2014.07.099

    Article  CAS  Google Scholar 

  129. Syn CK, Fultz B, Morris JW (1978) Mechanical stability of retained austenite in tempered 9Ni steel. Metall Trans A 9:1635–1640. https://doi.org/10.1007/BF02661946

    Article  Google Scholar 

  130. Wang MM, Tasan CC, Ponge D, Dippel AC, Raabe D (2015) Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater 85:216–228. https://doi.org/10.1016/j.actamat.2014.11.010

    Article  CAS  Google Scholar 

  131. Pan T, Zhu J, Su H, Yang CF (2015) Ni segregation and thermal stability of reversed austenite in a Fe–Ni alloy processed by QLT heat treatment. Rare Met 34:776–782. https://doi.org/10.1007/s12598-015-0607-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFB0703001, 2017YFB0305100), the National Natural Science Foundation of China (Nos. 51771153, 51371147, 51790481 and 51431008), the Innovation Guidance Support Project for Taicang Top Research Institutes (No. TC2018DYDS20), and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201825). The authors would like to thank the Analytical and Testing Center of Northwestern Polytechnical University for providing essential experimental apparatuses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Z. Chen or F. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work. The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W.X., Chen, Y.Z., Cong, Y.B. et al. On the austenite stability of cryogenic Ni steels: microstructural effects: a review. J Mater Sci 56, 12539–12558 (2021). https://doi.org/10.1007/s10853-021-06068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06068-w

Navigation