Skip to main content
Log in

Microstructural Evolution in an Fe-10Ni-0.1C Steel During Heat Treatment and High Strain-Rate Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fine structure in an Fe-10Ni-1.0Mo-0.6Mn-0.6Cr-0.08V-0.1C (wt pct) steel in a multi-step heat-treated condition called ‘QLT’ is understood by tracking its evolution in each step using transmission electron microscopy (TEM) and atom probe tomography; further, the consequence of high strain-rate deformation on the site-specific change in the QLT microstructure is examined by microdiffraction and energy dispersive spectroscopy in the TEM. The QLT treatment results in two generations of austenite (arising from the L- and the T-step) with differing Ni content. The primary focus of this study is on the thermal and mechanical stability of the precipitated austenite and the influence of austenite chemistry and size on the stability. Kolsky bar compression experiments were conducted to isolate a situation where an adiabatic shear band propagated partway through the specimen. Examination of the microstructure in such a specimen showed both generations of austenite to be present far from the shear band, ahead of the shear band and adjacent to the shear band. The austenite immediately ahead of the shear band was fragmented. Within the shear band, evidence was found for deformation-induced transformation to martensite. These findings are discussed within the context of improved damage tolerance and ballistic resistance observed earlier in field tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: International Journal of Plasticity, 2000, vol. 16, pp. 1391–1409.

    Google Scholar 

  2. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ International, 2003, vol. 43, pp. 438–46.

    CAS  Google Scholar 

  3. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Materialia, 2003, vol. 51, pp. 2611–22.

    CAS  Google Scholar 

  4. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Current Opinion in Solid State and Materials Science, 2004, vol. 8, pp. 219–37.

    CAS  Google Scholar 

  5. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor: Acta Materialia, 2008, vol. 56, pp. 16–22.

    CAS  Google Scholar 

  6. O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, and D. Raabe: Acta Materialia, 2011, vol. 59, pp. 364–74.

    CAS  Google Scholar 

  7. L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, and D. Raabe: Acta Materialia, 2012, vol. 60, pp. 2790–804.

    CAS  Google Scholar 

  8. M. Gouné, F. Danoix, S. Allain, and O. Bouaziz: Scripta Materialia, 2013, vol. 68, pp. 1004–7.

    Google Scholar 

  9. H. Springer, M. Belde, and D. Raabe: Materials Science and Engineering: A, 2013, vol. 582, pp. 235–44.

    CAS  Google Scholar 

  10. Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe: Acta Materialia, 2014, vol. 65, pp. 215–28.

    CAS  Google Scholar 

  11. M.-M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Materialia, 2014, vol. 79, pp. 268–81.

    CAS  Google Scholar 

  12. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, and C.J. Shang: Materials & Design, 2014, vol. 59, pp. 193–8.

    CAS  Google Scholar 

  13. M. Belde, H. Springer, G. Inden, and D. Raabe: Acta Materialia, 2015, vol. 86, pp. 1–14.

    CAS  Google Scholar 

  14. Y. Toji, G. Miyamoto, and D. Raabe: Acta Materialia, 2015, vol. 86, pp. 137–47.

    CAS  Google Scholar 

  15. E.J. Seo, L. Cho, and B.C. De Cooman: Acta Materialia, 2016, vol. 107, pp. 354–65.

    CAS  Google Scholar 

  16. M.-M. Wang, C.C. Tasan, D. Ponge, and D. Raabe: Acta Materialia, 2016, vol. 111, pp. 262–72.

    CAS  Google Scholar 

  17. I.R. Souza Filho, A. Kwiatkowski da Silva, M.J.R. Sandim, D. Ponge, B. Gault, H.R.Z. Sandim, and D. Raabe: Acta Mater., 2019, vol. 166, pp. 178–91.

  18. B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O. Fior, and J.W. Morris: Metallurgical Transactions A, 1985, vol. 16, pp. 2237–49.

    Google Scholar 

  19. S. Jin, J.W. Morris, and V.F. Zackay: Metallurgical Transactions A, 1975, vol. 6, pp. 141–9.

    CAS  Google Scholar 

  20. S. Jin, S.K. Hwang, and J.W. Morris: Metallurgical Transactions A, 1975, vol. 6, pp. 1569–75.

    Google Scholar 

  21. S. Jin, S.K. Hwang, and J.W. Morris: Metallurgical Transactions A, 1975, vol. 6, pp. 1721–6.

    Google Scholar 

  22. S.-K. Hwang, S. Jin, and J.W. Morris: Metallurgical Transactions A, 1975, vol. 6, pp. 2015–21.

    Google Scholar 

  23. C.K. Syn, S. Jin, and J.W. Morris: Met. Trans. A, 1976, vol. 7A, pp. 1827–32.

    CAS  Google Scholar 

  24. C.K. Syn, B. Fultz, and J.W. Morris: Metallurgical Transactions A, 1978, vol. 9, pp. 1635–40.

    Google Scholar 

  25. K.J. Kim and L.H. Schwartz: Materials Science and Engineering, 1978, vol. 33, pp. 5–20.

    CAS  Google Scholar 

  26. J.I. Kim and J.W. Morris: Metallurgical Transactions A, 1980, vol. 11, pp. 1401–6.

    Google Scholar 

  27. J.R. Strife and D.E. Passoja: Metallurgical Transactions A, 1980, vol. 11, pp. 1341–50.

    Google Scholar 

  28. J.I. Kim and J.W. Morris: Metallurgical Transactions A, 1981, vol. 12, pp. 1957–63.

    CAS  Google Scholar 

  29. J.I. Kim, C.K. Syn, and J.W. Morris: Metallurgical Transactions A, 1983, vol. 14, pp. 93–103.

    CAS  Google Scholar 

  30. J.I. Kim, H.J. Kim, and J.W. Morris: Metallurgical Transactions A, 1984, vol. 15, pp. 2213–9.

    Google Scholar 

  31. B. Fultz and J.W. Morris: Metall. Trans. A, 1985, pp. 173–7.

  32. B. Fultz and J.W. Morris: Metallurgical Transactions A, 1985, vol. 16, pp. 2251–6.

    Google Scholar 

  33. B. Fultz, J.I. Kim, Y.H. Kim, and J.W. Morris: Metallurgical Transactions A, 1986, vol. 17, pp. 967–72.

    Google Scholar 

  34. C. Hayzelden and B. Cantor: Acta Metallurgica, 1986, vol. 34, pp. 233–42.

    CAS  Google Scholar 

  35. C.W. Marschall, R.F. Hehemann, and A.R. Troiano: Transactions of American Society of Metals, 1962, vol. 55, pp. 135–48.

    CAS  Google Scholar 

  36. P. Wang and K.S. Kumar: Materials Science and Engineering: A, 2009, vol. 519, pp. 184–97.

    Google Scholar 

  37. X.J. Zhang: Materials Science and Technology, 2012, vol. 28, pp. 818–22.

    Google Scholar 

  38. D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 3046–59.

    Google Scholar 

  39. R.W. Fonda and G. Spanos: Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 5982–9.

    CAS  Google Scholar 

  40. D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metallurgical and Materials Transactions A, 2017, vol. 48, pp. 3642–54.

    CAS  Google Scholar 

  41. D. Jain, D.N. Seidman, E.J. Barrick, and J.N. DuPont: Metallurgical and Materials Transactions A, 2018, vol. 49, pp. 1031–43.

    CAS  Google Scholar 

  42. E.J. Barrick and J.N. DuPont: Materials Science and Engineering: A, 2019, vol. 748, pp. 189–204.

    CAS  Google Scholar 

  43. I. Harding, I. Mouton, B. Gault, D. Raabe, and K.S. Kumar: Scripta Materialia, 2019, vol. 172, pp. 38–42.

    CAS  Google Scholar 

  44. P.K. Lambert: Johns Hopkins University, 2017.

  45. F. Yuan, X. Bian, P. Jiang, M. Yang, and X. Wu: Mechanics of Materials, 2015, vol. 89, pp. 47–58.

    Google Scholar 

  46. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–9.

    CAS  Google Scholar 

  47. B. Gault, A.J. Breen, Y. Chang, J. He, E.A. Jägle, P. Kontis, P. Kürnsteiner, A. Kwiatkowski da Silva, S.K. Makineni, I. Mouton, Z. Peng, D. Ponge, T. Schwarz, L.T. Stephenson, A. Szczepaniak, H. Zhao, and D. Raabe: Journal of Materials Research, 2018, vol. 33, pp. 4018–30.

    CAS  Google Scholar 

  48. H. Zhao, F. De Geuser, A. Kwiatkowski da Silva, A. Szczepaniak, B. Gault, D. Ponge, and D. Raabe: Acta Materialia, 2018, vol. 156, pp. 318–29.

    CAS  Google Scholar 

  49. K.T. Ramesh: in Springer Handbook of Experimental Solid Mechanics, Springer, New York, 2008, pp. 929–60.

  50. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama: Materials Transactions, 2004, vol. 45, pp. 2245–51.

    CAS  Google Scholar 

  51. S.E. Rigby, A.D. Barr, and M. Clayton: Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 2018, vol. 171, pp. 3–13.

    Google Scholar 

  52. D.J. Parry, A.G. Walker, and P.R. Dixon: Meas. Sci. Technol., 1995, vol. 6, pp. 443–6.

    CAS  Google Scholar 

  53. H. Huang, O. Matsumura, and T. Furukawa: Materials Science and Technology, 1994, vol. 10, pp. 621–6.

    CAS  Google Scholar 

  54. Y. Inokuti and B. Cantor: Acta Metallurgica, 1982, vol. 30, pp. 343–56.

    CAS  Google Scholar 

  55. S.M.C. van Bohemen and J. Sietsma: Materials Science and Technology, 2014, vol. 30, pp. 1024–33.

    Google Scholar 

  56. H. Wang, X. Sun, P. Yang, W. Mao, and L. Meng: Journal of Materials Science & Technology, 2015, vol. 31, pp. 191–8.

    Google Scholar 

  57. S.M. Walley: Metallurgical and Materials Transactions A, 2007, vol. 38, pp. 2629–54.

    Google Scholar 

  58. P.R. Guduru, A.J. Rosakis, and G. Ravichandran: Mechanics of Materials, 2001, vol. 33, pp. 371–402.

    Google Scholar 

  59. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, and T.R. McNelley: Acta Materialia, 2003, vol. 51, pp. 1307–25.

    CAS  Google Scholar 

Download references

Acknowledgments

I.H. and K.S.K. acknowledge the Office of Naval Research (ONR contract # N00014-16-1-2286) for supporting this effort. K.S.K. acknowledges the Alexander von Humboldt Foundation for enabling collaboration with the Max Planck Institut für Eisenforschung. The authors are grateful to U. Tezins, C. Broß and A. Sturm for their technical support of the atom probe tomography and focused ion beam facilities at the Max-Planck-Institut für Eisenforschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 24, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harding, I., Mouton, I., Gault, B. et al. Microstructural Evolution in an Fe-10Ni-0.1C Steel During Heat Treatment and High Strain-Rate Deformation. Metall Mater Trans A 51, 5056–5076 (2020). https://doi.org/10.1007/s11661-020-05911-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05911-0

Navigation