Skip to main content
Log in

Influence of Heat Treatments on the Microstructural Evolution and Resultant Mechanical Properties in a Low Carbon Medium Mn Heavy Steel Plate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the microstructural evolution and resultant mechanical properties in a low carbon medium Mn heavy steel plate were investigated in detail. The results show that the introduction of medium manganese alloy design in the heavy steel plate has been shown to achieve the outstanding combination of strength, ductility, low-temperature impact toughness, and strain hardening capacity. It has been found that the austenite phase mainly displays at martensitic lath boundaries and shows lath shape for the heat treating at 873 K (600 °C) for 1 to 10 hours or 893 K (620 °C) for 2 hours, and not all the austenite phase obeys the K–S or N–W orientation relationship with respect to abutting martensitic lath. Although the microstructure in the steel after heat treating at 873 K (600 °C) for 1 to 10 hours is similar to each other, the resultant mechanical properties are very different because the volume fraction and stability of retained austenite vary with the heat treatments. The best low-temperature impact toughness is achieved after heat treating at 873 K (600 °C) for 2 hours due to the formation of a considerable volume fraction of retained austenite with relatively high stability, but the strain hardening capacity and ductility are disappointing because of insufficient TRIP effect. Based on enhancing TRIP effect, the two methods have been suggested. One is to increase the isothermal holding temperature to 893 K (620 °C), and the other one is to prolong the isothermal holding time to 10 hours at 873 K (600 °C). The two methods can significantly increase strain hardening capacity and ductility nearly without harming low-temperature impact toughness. In addition, the stability of retained austenite has been discussed by the quantitative analysis and it has been demonstrated that the stability of retained austenite is related to the chemical composition, size, and morphology. Moreover, the isothermal holding temperature has a great effect on the stability of retained austenite, while the effect of the isothermal holding time is relatively poor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z.B. Jiao, J.H. Luan, M.K. Miller and C.T. Liu: Acta Mater., 2015, vol. 97, pp. 58-67.

    Article  Google Scholar 

  2. A. Ghosh, S. Das, S. Chatterjee and P. Ramachandra Rao: Mater. Charact., 2006, vol. 56, no. 1, pp. 59-65.

    Article  Google Scholar 

  3. C.Y. Chen, S.F. Chen, C.C. Chen and J.R. Yang: Mater. Sci. Eng. A, 2015, vol. 634. pp. 123-133.

    Article  Google Scholar 

  4. A.G. Kostryzhev, O.O. Marenych, C.R. Killmore and E.V. Pereloma: Metall. Mater. Trans. A, 2015, vol. 46, no. 8, pp. 3470-3480.

    Article  Google Scholar 

  5. P. Cizek, B.P. Wynne, C. H. J. Davies, B.C. Muddle and P. D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33, no. 5, pp. 1331-1349.

    Article  Google Scholar 

  6. C.L. Zhang, D.Y. Cai, Y.H. Wang, M.Q. Liu, B. Liao and Y.C. Fan: Mater. Charact., 2008, vol. 59, no. 11, pp. 1638-1642.

    Article  Google Scholar 

  7. P.A. Manohar, T. Chandra and C.R. Killmore: ISIJ Int., 1996, vol. 36, no. 12, pp. 1486-1493.

    Article  Google Scholar 

  8. S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44, no. 11, pp. 5018-5024.

    Article  Google Scholar 

  9. H. Aydin, E. Essadiqi, I.H. Jung and S. Yue: Mater. Sci. Eng. A, 2013, vol. 564, pp. 501-508.

    Article  Google Scholar 

  10. B.C. De Cooman, P. Gibbs, S. Lee and D.K. Matlock: Metall. Mater. Trans. A, 2013, vol. 44, no. 6, pp. 2563-2572.

    Article  Google Scholar 

  11. D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2013, vol. 44, no. 1, pp. 286-293.

    Article  Google Scholar 

  12. C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong and W.Q. Cao: ISIJ Int., 2011, vol. 51, no. 4, pp. 651-656.

    Article  Google Scholar 

  13. S.J. Lee, S. Lee and B.C. De Cooman: Scr. Mater., 2011, vol. 64, no. 7, pp. 649-652.

    Article  Google Scholar 

  14. R.L. Miller: Metall. Trans., 1972, vol. 3, no. 4, pp. 905-912.

    Article  Google Scholar 

  15. N. Nakada, K. Mizutani, T. Tsuchiyama and S. Takaki: Acta Mater., 2014, vol. 65, pp. 251-258.

    Article  Google Scholar 

  16. S. Lee, S.J. Lee and B.C. De Cooman: Scr. Mater., 2011, vol. 65, no. 3, pp. 225-228.

    Article  Google Scholar 

  17. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang and L. Wang: Scr. Mater., 2013, vol. 68, no. 5, pp. 321-324.

    Article  Google Scholar 

  18. J.B. Seol, J.E. Jung, Y.W. Jang and C.G. Park: Acta Mater., 2013, vol. 61, pp. 558-578.

    Article  Google Scholar 

  19. M. Niikura and J.W. Morri JR: Metall. Trans. A, 1980, vol. 11, no. 9, pp. 1531-1540.

    Google Scholar 

  20. G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan and B.Z. Bai: Acta Mater., 2014, vol. 76, pp. 425-433.

    Article  Google Scholar 

  21. J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu and G.D. Wang: Mater. Charact., 2015, vol. 106, pp. 108-111.

    Article  Google Scholar 

  22. Q. Zhou, L.H. Qian, J. Tan, J.Y. Meng and F.C. Zhang: Mater. Sci. Eng. A, 2013, vol. 578, pp. 370-376.

    Article  Google Scholar 

  23. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer and D.K. Matlock: Scr. Mater., 2004, vol. 50, no. 12, pp. 1445-1449.

    Article  Google Scholar 

  24. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439-5447.

    Article  Google Scholar 

  25. J. Han, S.J. Lee, J.G. Jung and Y.K. Lee: Acta Mater., 2014, vol. 78, pp. 369-377.

    Article  Google Scholar 

  26. J. Han and Y.K. Lee: Acta Mater., 2014, vol. 67, pp. 354-361.

    Article  Google Scholar 

  27. H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun and H. Dong: Acta Mater., 2011, vol. 59, pp. 4002-4014.

    Article  Google Scholar 

  28. N. Nakada, T. Tsuchiyama, S. Takaki and N. Miyano: ISIJ Int., 2011, vol. 51, no. 2, pp. 299-304.

    Article  Google Scholar 

  29. G. Kurdjumov and G. Sachs: Phy. Z (in German), 1930, vol. 64, pp. 325-332.

    Google Scholar 

  30. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721-727.

    Google Scholar 

  31. Z. Nishiyama: Sci. Rep. Tohoku Univ. (First Ser), 1934–1935, vol. 23, pp. 638–51.

  32. D.W. Shu, S.J. Park, T.H. Lee, C.S. OH and S.J. Kim: Metall. Mater. Trans. A, 2010, vol. 41, no. 2, pp. 397-408.

    Google Scholar 

  33. P.J. Gibbs, B.C. De Cooman, D.W. Brown, B. Clausen, J.G. Schroth, M.J Merwin and D.K. Matlock: Mater. Sci. Eng. A, 2014, vol. 609, pp. 323-333.

    Article  Google Scholar 

  34. S. Lee, S.J. Lee, S.S. Kumar, K. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2011, vol. 42, no. 12, pp. 3638-3651.

    Article  Google Scholar 

  35. B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao and H. Dong: Scr. Mater., 2013, vol. 69, no. 3, pp. 215-218.

    Article  Google Scholar 

  36. D. Duchateau and M. Guttmann: Acta Metall., 1981, vol. 29, no. 7, pp. 1291-1297.

    Article  Google Scholar 

  37. C.Y. Syn, B. Fultz and J.W. Morris, Jr: Metall. Trans. A, 1978, vol. 9, no. 11, pp. 1635-1640.

    Article  Google Scholar 

  38. H.S. Yang and H.K.D.H. Bhadeshia: Scr. Mater., 2009, vol. 60, no. 7, pp. 493-495.

    Article  Google Scholar 

  39. J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman and D.V. Edmonds: Metall. Mater. Trans. A, 2011, vol. 42, no. 12, pp. 3591-3601.

    Article  Google Scholar 

  40. H.W. Yen, S.W. Ooi, M. Eizadjou, A. Breen, C.Y. Huang, H.K.D.H. Bhadeshia and S.P. Ringer: Acta Mater., 2015, vol. 82, pp. 100-114.

    Article  Google Scholar 

  41. H.S. Zhao, X. Zhu, W. Li, X.J. Jin, L. Wang, H. Jiao and D.M. Jiang: Mater. Sci. Tech., 2014, vol. 30, no. 9, pp. 1008-1013.

    Article  Google Scholar 

  42. J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong and W.Q. Cao: Scr. Mater., 2010, vol. 63, no. 8, pp. 815-818.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Project funded by China Postdoctoral Science Foundation (2014M560217, 2015T80260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

Manuscript submitted August 11, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lv, My., Liu, Zy. et al. Influence of Heat Treatments on the Microstructural Evolution and Resultant Mechanical Properties in a Low Carbon Medium Mn Heavy Steel Plate. Metall Mater Trans A 47, 2300–2312 (2016). https://doi.org/10.1007/s11661-016-3378-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3378-x

Keywords

Navigation