Skip to main content

Advertisement

Log in

Effects of radius and electronegativity of donors on the microstructure and mechanical, thermal, and electrical properties of ZnO varistors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this paper, influence of radius and electronegativities of seven kinds of donors on the composition, microstructure, mechanical, thermal and electrical properties of ZnO varistors were investigated via XRD, SEM, XPS, mechanical, thermal and electrical properties tests. Results showed that when sintered at 1100 °C for 2 h, the obtained varistors exhibited a dense microstructure, where radius of donors played an important role on the grain size and size distribution of varistors; Mechanical properties and coefficient of thermal expansion of varistors were mainly affected by the radius of donors, with specimen 6# possessing the highest values of 123.46 MPa (σf), 80.47 GPa (Ef), and 6.58 × 10−6 °C−1 (λc), respectively; Values of E1mA and α initially increased and then decreased with the increase of donors’ radius, whereas those of JL and K exhibited opposite trends. E1mA and α had maximum values of 569.94 V mm–1 and 26.70, whereas JL and K possessed the lowest values of 2.31 μA⋅cm−2 and 1.35, respectively, when Co2+ worked as the donor (specimen 6#). The DC aging process of ZnO varistors obeyed the ion migration mechanism, the radius of donors can affect the number of it entering the ZnO lattice, which can limit the migration of zinc gaps via the formation of substitution and filling defects in the ZnO lattice. The electronegativity of donors can reduce the ion migration speed via the stronger electrostatic force, and specimen 6# possessed the lowest DC aging properties (KT = 1.68).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.K. Roy, High nonlinearity in 0.1 mol.% In2O3 added ZnO-V2O5 based varistors prepared at different sintering temperatures[J]. Ceram. Int. 47, 35152–35159 (2021). https://doi.org/10.1016/j.ceramint.2021.09.058

    Article  CAS  Google Scholar 

  2. S.A.S. Qaid, M.A.A. Issa, A.M. Hassib, B.A.A. Asbahi, E.M. Abuassaj, A.A.A. Ahmed, A novel method for improving the microstructure and electrical properties of Pr6O11-based ZnO varistors[J]. J. Korean Ceram. Soc. 59, 796–802 (2022). https://doi.org/10.1007/s43207-022-00221-0

    Article  CAS  Google Scholar 

  3. B.W. Wang, J.Z. Lu, P.Z. Gao, Z.Y. Fu, Z.L. Jiang, Study on the high impulse current withstand properties and failure mechanism of ZnO varistors with different Bi2O3 content [J]. J. Mater. Sci.: Mater. Electron. 33, 25446–25462 (2022). https://doi.org/10.1007/s10854-022-09249-8

    Article  CAS  Google Scholar 

  4. G.Y. Sun, H.F. Zhao, Improving Stability and Low Leakage Current of ZnO Varistors Ceramics[J]. Trans. Electr. Electron. Mater. 24, 267–270 (2023). https://doi.org/10.1007/s42341-023-00447-7

    Article  Google Scholar 

  5. H. Jiang, X. Ren, X. Lao, A. Kong, M. Zhong, Y. Sun, Y. Wu, Z. Yao, L. Shi, Effect of NiO doping on grain growth and electrical properties of ZnO-based varistors[J]. J. Eur. Ceram. Soc. 42, 3898–3904 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.03.033

    Article  CAS  Google Scholar 

  6. M.V. Lungu, Effects of Dopants and Processing Parameters on the Properties of ZnO-V2O5-Based Varistors Prepared by Powder Metallurgy: A Review[J]. Materials. 16, 3725 (2023). https://doi.org/10.3390/ma16103725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Tian, G.R. Li, S. Bernik, M. Podlogar, X. Shi, X.Z. Ruan, L.Y. Zheng, Effect of Co3O4-doping on the microstructure and electrical properties of novel ZnO-Cr2O3-based varistor ceramics[J]. Mat Sci. Semicon Proc. 163, 107570 (2023). https://doi.org/10.1016/j.mssp.2023.107570

    Article  CAS  Google Scholar 

  8. B.W. Wang, B.H. Chen, P.Z. Gao, H.H. Chen, P. Zhang, Mechanism of Ga2O3 addition on the enhancement of electrical and mechanical properties of ZnO Based Varistor [J]. Ceram. Int. 47, 4157–4165 (2021). https://doi.org/10.1016/j.ceramint.2020.09.293

    Article  CAS  Google Scholar 

  9. X.L. Huang, X. Liao, Y. Pu, D.C. Zhu, Q. Yan, The enhanced electrical properties of TiO2-Nb2O5-ZnO Varistor by sintering with the pre-synthesized B-Bi-O frit[J]. J. Electorceram. 51(1), 1–11 (2023). https://doi.org/10.1007/s10832-023-00312-2

    Article  CAS  Google Scholar 

  10. Z.L. Cheng, R. Li, Y.W. Long, J.Y. Li, S.T. Li, K.N. Wu, Power loss transition of stable ZnO varistor ceramics: Role of oxygen adsorption on the stability of interface states at the grain boundary[J]. J. Adv. Ceram. 12(5), 972–983 (2023). https://doi.org/10.26599/JAC.2023.9220732

    Article  CAS  Google Scholar 

  11. D.J. Liu, Y.Y. Ma, J.B. He, H. Wang, Y.X. Zhou, G.Y. Sun, H.F. Zhao, ZnO varistors with low leakage current and high stability arrester with Ga doping[J]. Acta Phys. Sin. 72(6), 067301 (2023). https://doi.org/10.7498/aps.72.20222233

    Article  CAS  Google Scholar 

  12. W.B. Cao, Y.W. Guo, J.F. Su, J.K. Liu, Effect of Sintering Temperature on the Microstructural Evolution of ZnO Varistors[J]. J. Electron. Mater. 52, 1266–1273 (2023). https://doi.org/10.1007/s11664-022-10054-6

    Article  CAS  Google Scholar 

  13. P.K. Xie, Z.Y. Wang, K.N. Wu, Evolution of Intrinsic and Extrinsic Electron Traps at Grain Boundary during Sintering ZnO Based Varistor Ceramics[J]. Materials. 15, 1098 (2022). https://doi.org/10.3390/ma15031098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T.K. Gupta, Application of zinc oxide varistors[J]. J. Am. Ceram. Soc. 73, 1817–1840 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x

    Article  CAS  Google Scholar 

  15. J. Li, K. Tang, S. Yang, D. Zhu, Effects of Sb2O3 on the microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics fabricated by two-step solid-state reaction route[J]. Ceram. Int. 47, 19394–19401 (2021). https://doi.org/10.1016/j.ceramint.2021.03.276

    Article  CAS  Google Scholar 

  16. L.M. Levinson, H.R. Philipp, The physics of metal oxide varistors[J]. J. Appl. Phys. 46, 1332–1341 (1975). https://doi.org/10.1063/1.321701

    Article  CAS  Google Scholar 

  17. M.Y. Shi, L. Zhang, Z. Cheng, Z.T. Wang, Q. He, J. Qin, Y.T. Jiu, B. Tang, D. Xu, Effect of La2O3 doping on microstructure and electrical properties of flash-sintered ZnO-Bi2O3 varistor[J]. J. Mater. Sci.: Mater Electron. 33, 23437–23446 (2022). https://doi.org/10.1007/s10854-022-09105-9

    Article  CAS  Google Scholar 

  18. M. Zhao, X. Li, T.Y. Li, Y. Shi, B.W. Li, Effect of Y2O3, Nd2O3 or Sm2O3 on the microstructure and electrical properties of ZnVMnNbO varistor ceramics[J]. J. Mater. Sci. Mater. Electron. 30, 450–456 (2019). https://doi.org/10.1007/s10854-018-0309-1

    Article  CAS  Google Scholar 

  19. X. Zhao, R. Wen, M. Cuo, Y.P. Li, J.G. Song, L.C. Hao, H.Y. Mao, Influence of Doping Gd2O3 on the Electrical Properties of ZnO Varistor[J]. Insul. Sur. Arrest. 5, 170–175 (2021). https://doi.org/10.16188/J.isa.1003-8337.2021.05.27

    Article  Google Scholar 

  20. C.W. Nahm, Pulse aging behavior of ZnO-Pr6O11-CoO-Cr2O3-Dy2O3 varistor ceramics with sintering time[J]. Ceram. Int. 37, 1409–1414 (2011). https://doi.org/10.1016/j.ceramint.2011.01.011

    Article  CAS  Google Scholar 

  21. H.F. Zhao, H. Wang, X.J. Meng, J.G. Zhao, Q.Y. Xie, A method to reduce ZnO grain resistance and improve the intergranular layer resistance by Ca2+ and Al3+ co-doping[J]. Mater. Sci. Semicond. Process. 128, 105768 (2021). https://doi.org/10.1016/j.mssp.2021.105768

    Article  CAS  Google Scholar 

  22. J.K. Liu, J.J. Zhu, W.B. Cao, S.H. Liu, Z.Z. Li, H.L. Chen, Y.W. Guo, R.K. Xu, K.Y. Liu, Effect of Sc2O3 doping on microstructure and electrical properties of ZnO-Bi2O3-based varistors[J]. J. Phys. B: Condens. Matter. 650, 414552 (2023). https://doi.org/10.1016/j.physb.2022.414552

    Article  CAS  Google Scholar 

  23. Y. Feng, Y.P. Li, X.T. Zhao, X. Zhao, M. Guo, L.J. Yang, R.J. Liao, Effect of DC ageing on the NiO-doped ZnO varistor ceramics[J]. J. Mater. Sci. Mater. Electron. 33, 26124–26134 (2022). https://doi.org/10.1007/s10854-022-09299-y

    Article  CAS  Google Scholar 

  24. H.F. Zhao, J. Hu, S.M. Chen, Q.Y. Xie, J.L. He, High nonlinearity and high voltage gradient ZnO varistor ceramics tailored by combining Ga2O3, Al2O3, and Y2O3 dopants[J]. J. Am. Ceram. Soc. 99(3), 769–772 (2016). https://doi.org/10.1111/jace.14110

    Article  CAS  Google Scholar 

  25. P.F. Meng, J. Hu, J.B. Wu, J.L. He, Comprehensive Performances of ZnO Varistors Tailored by Multi-elements Doping[J]. High Voltage Eng. 44(1), 241–247 (2018). https://doi.org/10.13336/j.1003-6520.hve.20171227030

    Article  Google Scholar 

  26. H.F. Zhao, J.L. He, J. Hu, S.M. Chen, Q.Y. Xie, High nonlinearity and low residual- voltage ZnO varistor ceramics by synchronously doping Ga2O3 and Al2O3[J]. Mater. Lett. 164, 80–83 (2016). https://doi.org/10.1016/j.matlet.2015.10.0700167-577X

    Article  CAS  Google Scholar 

  27. Y.W. He, B.G. Wei, Z.C. Fu, M.Q. Dai, J. Liu, MOV Failure Modes and Microstructural Characteristics Under Operating Duty Tests With Multiwaveform Multipulse Currents[J]. IEEE. Trans. Power. Deliver. 33(5), 2274–2283 (2018). https://doi.org/10.1109/TPWRD.2018.2790431

    Article  Google Scholar 

  28. R. Danzer, B. Kaufmann, P. Supancic, Failure of high power varistor ceramic components[J]. J. Eur. Ceram. Soc. 40, 3766–3770 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.007

    Article  CAS  Google Scholar 

  29. N. Raidl, M. Hofstätter, P. Supancic, Piezotronic Effect on Electrical Characteristics of Bulk ZnO Varistors[J]. Adv. Eng. Mater. 19(4), 1600677 (2017). https://doi.org/10.1002/adem.201600677

    Article  CAS  Google Scholar 

  30. Y.P. Tu, Z.H. Zheng, X. Li, Q. Wang, M.X. Luo, Grain-Boundary and Thermally Stimulated Current Characteristics of Y2O3-Doped ZnO Varistor[J]. J. Am. Ceram. Soc. 96(11), 3518–3522 (2013). https://doi.org/10.1111/jace.12517

    Article  CAS  Google Scholar 

  31. S. EL-Rabaie, A.H. Khafagy, M.T. Dawoud, M.T. Attiai, Mechanical, microstructure and electrical properties of ternary ZnO-V2O5-Mn3O4 varistor with sintering temperature[J]. Bull. Mater. Sci. 38(3), 773–781 (2015). https://doi.org/10.1007/s12034-015-0903-2

    Article  CAS  Google Scholar 

  32. X. Zhao, H.B. Shen, M. Guo, Z.M. He, Y.P. Li, R. Wen, DC Aging Mechanism of Co2O3-Doped ZnO Varistors[J]. Energies 14, 4011 (2021). https://doi.org/10.3390/en14134011

    Article  CAS  Google Scholar 

  33. J.L. He, J. Liu, J. Hu, W.C. Long, AC ageing characteristics of Y2O3-doped ZnO varistors with high voltage gradient[J]. Mater. Lett. 65, 2595–2597 (2011). https://doi.org/10.1016/j.matlet.2011.06.022

    Article  CAS  Google Scholar 

  34. W.B. Cao, J.F. Su, J.K. Liu, J.J. Chen, Y.N. Qiao, Effect of Heating Rate on Microstructure and Electrical Properties of ZnO Varistors[J]. J. Chin. Ceram. Soc. 49(12), 2615–2620 (2021). https://doi.org/10.14062/j.issn.0454-5648.20210247

    Article  CAS  Google Scholar 

  35. K.Y. Li, D.F. Xue, Estimation of Electronegativity Values of Elements in Different Valence States[J]. J. Phys. Chem. A 110, 11332–11337 (2006). https://doi.org/10.1021/jp062886k

    Article  CAS  PubMed  Google Scholar 

  36. X.Z. Cao, T.Y. Song, X.X. Wang, Inorganic chemistry (Third Edition)[M], (Higher Education Press, 2015), p. 12

  37. Z.X. Zhu, Q. Zhang, S.Y. Zhu, C.J. Lu, Y. Liu, J. Yang, C.F. Wu, L.H. Cao, K. Wang, Z.P. Gao, C.Z. Zhu, Dynamic Breakdown of ZnO Varistor Ceramics under Pulsed Electric Field[J]. J. Inorg. Mater. 34(7), 715–720 (2019). https://doi.org/10.15541/jim20180429

    Article  Google Scholar 

  38. S.Q. Ma, S. Fu, Q.K. Wang, H.L. Yang, W.L. Li, P.G. He, M.R. Wang, D.L. Cai, X.M. Duan, D.C. Jia, H.T. Lin, Y. Zhou, 3D printing of honeycomb Si3N4 ceramic[J]. Int. J. Appl. Ceram. Technol. 20, 2239–2248 (2023). https://doi.org/10.1111/ijac.14384

    Article  CAS  Google Scholar 

  39. M. Zhou, X.Y. Zhang, Y.M. Zhang, D. Li, Z. Zhao, X.G. Lyu, Q. Wang, K. Tang, Y.M. Jia, L.N. Niu, F. Wang, Investigation of the structure and mechanical properties of a novel dental graded glass/zirconia ceramic [J]. J. Eur. Ceram. Soc. 43, 5671–5681 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.05.039

    Article  CAS  Google Scholar 

  40. S. Moratal, E. Rosado, R. Benavente, M.D. Salvador, F.L. Penaranda-Foix, R. Moreno, A. Borrell, Fast-low temperature microwave sintering of ZrSiO4-ZrO2 composites[J]. Ceram. Int. 49, 21652–21657 (2023). https://doi.org/10.1016/j.ceramint.2023.03.301

    Article  CAS  Google Scholar 

  41. Z.Y. Fu, Z.L. Jiang, B.W. Wang, X. Ren, Z. Yao, Effects of refining methods and time on suspension, microstructure, and electrical properties of ZnO varistors[J]. J. Mater. Sci. Mater. Electron. 34, 597 (2023). https://doi.org/10.1007/s10854-023-10012-w

    Article  CAS  Google Scholar 

  42. Z.Y. Fu, J.J. He, J.Z. Lu, Z. Fang, B.W. Wang, Investigation of dielectric relaxation and degradation behavior of two-step sintered ZnO varistors[J]. Ceram. Int. 45, 21900–21909 (2019). https://doi.org/10.1016/j.ceramint.2019.07.201

    Article  CAS  Google Scholar 

  43. P. Durán, F. Capel, J. Tartaj, C. Moure, Low-temperature fully dense and electrical properties of doped-ZnO varistors by a polymerized complex method[J]. J. Eur. Ceram. Soc. 22, 67–77 (2002). https://doi.org/10.1016/S0955-2219(01)00245-X

    Article  Google Scholar 

  44. F. Kharchouche, A. Zebar, Influence of SrCO3-doping on the microstructure and electrical properties of ZnO-(Bi2O3/Sb2O3) varistor ceramics[J]. J. Mater. Sci. Mater. Electron. 34, 776 (2023). https://doi.org/10.1007/s10854-023-10092-8

    Article  CAS  Google Scholar 

  45. S. Hamdelou, K. Guergouri, L. Arab, The effect of the starting powders particle size on the electrical properties of sintered Co doped ZnO varistors[J]. Appl. Nanosci. 5, 817–825 (2015). https://doi.org/10.1007/s13204-014-0382-6

    Article  CAS  Google Scholar 

  46. M.E. Juarez-Huitron, M.I. Miranda-Lopez, M.B. Hernandez, R. Cue-Sampedro, J.A. Aguilar-Martinez, Influence of V2O5, Nb2O5, Sb2O5 and Ta2O5 on microstructure and non-ohmic electrical properties of SnO2-based systems[J]. J. Alloys Compd. 968, 172024 (2023). https://doi.org/10.1016/j.jallcom.2023.172024

    Article  CAS  Google Scholar 

  47. Y. Shi, Q.G. Liu, Y. Chen, M.H. Wang, Synthesis and properties of rod-like ZnO composite powders by the reflux method[J]. J. Mater. Sci. Mater. Electron. 33, 3556–3565 (2022). https://doi.org/10.1007/s10854-021-07548-0

    Article  CAS  Google Scholar 

  48. C. Hudy, O. Długosz, J. Gryboś, F. Zasada, A. Krasowska, J.J.Z. Sojka, Catalytic performance of mixed MxCo3-xO4 (M =Cr, Fe, Mn, Ni, Cu, Zn) spinels obtained by combustion synthesis for preferential carbon monoxide oxidation (CO-PROX): insights into the factors controlling catalyst selectivity and activity[J]. Catal. Sci. Technol. 12, 2446 (2022). https://doi.org/10.1039/d2cy00388k

    Article  CAS  Google Scholar 

  49. H.Z. Liang, X.Y. Liu, J.X. Tong, P. He, Z.Y. Zhou, Z.W. Luo, A.X. Lu, Structure, Judd-Ofelt analysis and spectra studies of Sm3+-doped MO-ZnO-B2O3–P2O5 (M = Mg, Ca, Sr, Ba) glasses for reddish-orange light application[J]. Ceram. Int. 49, 15266–15275 (2023). https://doi.org/10.1016/j.ceramint.2023.01.110

    Article  CAS  Google Scholar 

  50. G.H. Ren, X.Y. Ren, W.T. Ju, Y.S. Jiang, M.L. Han, Z.Q. Dong, X.D. Yang, K.Z. Dou, B. Xue, F.F. Li, Controlled vertical growing of Bi2O3 nano sheets on diatomite disks and its high visible-light photocatalytic performance[J]. J. Photochem. Photobiol. Chem. (2020). https://doi.org/10.1016/j.jphotochem.2020.112367

    Article  Google Scholar 

  51. X.W. Lv, W.Y. Huang, X.W. Ding, J.W. He, Q.M. Huang, J.L. Tan, H. Cheng, J. Feng, L.J. Li, Preparation and photocatalytic activity of Fe3O4@SiO2@ZnO:La[J]. J. Rare. Earth. 38, 1288–1296 (2020). https://doi.org/10.1016/j.jre.2020.04.007

    Article  CAS  Google Scholar 

  52. Z. Abdi, O. Bagheri, M. Kazemzadehhojaghan, A.M. Khachatourian, In situ synthesis of polypyrrole/Nd-doped ZnO nanocomposite with enhanced visible light photocatalytic performance for the degradation of organic dyes[J]. Mater. Chem. Phys. 296, 127248 (2023). https://doi.org/10.1016/j.matchemphys.2022.127248

    Article  CAS  Google Scholar 

  53. P. Kaur, K. Rahul, S. Chalotra, H. Kaur, A. Kandasami, D.P. Singh, Role of Bound Magnetic Polaron Model in Sm Doped ZnO: Evidence from Magnetic and Electronic Structures[J]. Appl. Surf. Sci. Adv. 5, 100100 (2021). https://doi.org/10.1016/j.apsadv.2021.100100

    Article  Google Scholar 

  54. A.S. Kadari, Y. Khane, A.N. Ech-Chergui, A. Popa, M. Guezzoul, D. Silipas, F. Bennabi, A. Zoukel, E. Akyildiz, K. Driss-Khodja, B. Amrani, Growth, properties and photocatalytic degradation of congo red using Gd: ZnO thin films under visible light[J]. Inorg. Chem. Commun. 142, 109626 (2022). https://doi.org/10.1016/j.inoche.2022.109626

    Article  CAS  Google Scholar 

  55. H.W. Zhang, L. Fu, W.D. Xuan, J.B. Qi, Surface modification of the Surface modification of the La1.7Mg1.3Ni9 alloy with trace Y2O3 related to the electrochemical hydrogen storage properties[J]. Renew. Energ. 145, 1572–1577 (2020). https://doi.org/10.1016/j.renene.2019.07.080

    Article  CAS  Google Scholar 

  56. A. Murtaza, X.H. Song, A. Ghani, F. Kabir, A. Saeed, W.L. Zuo, M. Yaseen, K.L. Li, C. Zhou, Y. Zhang, S. Yang, Ferromagnetism and dielectric properties in Zn0.95- xNdxTM0.05O (TM=Co, Fe) nanocrystals: Collective role of grain boundaries and oxygen vacancies[J]. Ceram. Int. 49, 16524–16535 (2023). https://doi.org/10.1016/j.ceramint.2023.01.231

    Article  CAS  Google Scholar 

  57. J.A. Liu, C.H. Li, Y. Zou, A.N. Chen, L. Hu, Y.S. Shi, Effect of ball milling on the sintering performance of indium-gallium-zinc oxide ceramics: The diffusion mechanism and lattice distortion of milled powders[J]. Ceram. Int. 47, 15682–15694 (2021). https://doi.org/10.1016/j.ceramint.2021.02.138

    Article  CAS  Google Scholar 

  58. N.V. Seetala, C.L. Prevo, L.E. Matson, T.S. Key, I.I. Park, Spark Plasma Sintering of High-Energy Ball-Milled ZrB2 and HfB2 Powders with 20vol% SiC[J]. Mater. Sci. For. 941, 1990–1995 (2018). https://doi.org/10.4028/www.scientific.net/MSF.941.1990

    Article  Google Scholar 

  59. M. Hofstätter, A. Nevosad, C. Teichert, P. Supancic, R. Danzer, Voltage polarity dependent current paths through polycrystalline ZnO varistors[J]. J. Eur. Ceram. Soc. 33, 3473–3476 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.017

    Article  CAS  Google Scholar 

  60. T.M. Kutran, M.V. Zamula, B.A. Pokhylko, O.V. Shyrokov, V.G. Kolesnichenko, V.V. Kovalchuk, A.V. Stepanenko, HYu. Borodianska, Reactive synthesis of B4C-CrB2, B4C-TiB2, and B4C-TiCrB2 heterophase ceramics by spark plasma sintering[J]. Powder Metall. Met. Ceram. 61, 522–540 (2023). https://doi.org/10.1007/s11106-023-00342-z

    Article  CAS  Google Scholar 

  61. L.J. Liu, Z.H. Zhang, X.T. Jia, Q. Wang, Q. Song, X.Y. Li, X.W. Cheng, The effect of spark plasma sintering parameters on the densification and mechanical properties of TiB2-TiC-TiB composites[J]. Int. J. Appl. Ceram. Technol. (2023). https://doi.org/10.1111/ijac.14492

    Article  Google Scholar 

  62. X.H. Liao, L. Gao, X. Wang, F. Zhang, L.S. Liu, L. Ren, Mechanical Properties of Boron Carbide/Reduced graphene-oxide Composites Ceramics[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 37(6), 1087–1095 (2022). https://doi.org/10.1007/s11595-022-2638-4

    Article  CAS  Google Scholar 

  63. R. Sattar, T. Ishaq, A. Afzal, R. Mukhtar, A. Naz, Phase change material infiltrated 3D porous carbon interconnected composites for thermal energy storage[J]. Energ. Source Part. A. 44(1), 2133–2152 (2022). https://doi.org/10.1080/15567036.2022.2058117

    Article  CAS  Google Scholar 

  64. Y.A. Kosevich, L.G. Potyomina, A.N. Darinskii, I.A. Strelnikov, Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces[J]. Phys. Rev. B 97, 094117-1–94127 (2018). https://doi.org/10.1103/PhysRevB.97.094117

    Article  Google Scholar 

  65. P. Zhang, C.C. Wang, S.F. Zhou, B.S. Guo, Z.G. Zhang, Z.T. Yu, W. Li, Effect of Sintering Temperature on the Microstructure and Properties of High-Strength and Highly Conductive 5 wt.% ZrB2/Cu Composite[J]. Powder Metall. Met. Ceram. 61, 560–573 (2023). https://doi.org/10.1007/s11106-023-00345-w

    Article  CAS  Google Scholar 

  66. T.Y. Li, W. Guo, A.W. Xie, C. Zhou, D. Xu, R.Z. Zuo, Structural and electrical properties of ZnO-V2O5-TiO2-Co2O3-MnO varistor ceramics with low sintering Temperature[J]. J. Mater. Sci. Mater. Electron. 34, 607 (2023). https://doi.org/10.1007/s10854-023-09935-1

    Article  CAS  Google Scholar 

  67. T.Y. Li, Study of Nonlinear Electrical Properties in Rare Earth Oxide-based Functional Ceramics[D], Southwest Jiaotong University, 2009

  68. P.F. Meng, S.L. Lyu, J. Hua, J.L. He, Tailoring low leakage current and high nonlinear coefficient of a Y-doped ZnO varistor by indium doping[J]. Mater. Lett. 188, 77–79 (2017). https://doi.org/10.1016/j.matlet.2016.10.100

    Article  CAS  Google Scholar 

  69. B.H. Chen, B.W. Wang, P.Z. Gao, P. Zhang, H.H. Chen, Effects of raw particle size and annealing on microstructure, electrical and mechanical behaviors of ZnO-based varistors[J]. J. Alloys Compd. 872, 159638 (2021). https://doi.org/10.1016/j.jallcom.2021.159638

    Article  CAS  Google Scholar 

  70. R.F.K. Gunnewiek, C.P.F. Perdomo, I.C. Cancellieri, A.L.F. Cardoso, R.H.G.A. Kiminami, Microwave sintering of a nanostructured low-level additive ZnO-based varistor [J]. Ceram. Int. 46, 15044–15053 (2020). https://doi.org/10.1016/j.ceramint.2020.03.035

    Article  CAS  Google Scholar 

  71. X.Q. Song, W.Z. Lu, Y.H. Lou, T. Chen, S.W. Ta, Z.X. Fu, W. Lei, Synthesis, lattice energy and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics[J]. J. Eur. Ceram. Soc. 40, 3035–3041 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.048

    Article  CAS  Google Scholar 

  72. W. Abd-Allah, E. Nabhan, Effect of CoO and Gamma Irradiation on the Infrared Absorption Spectra of Lithium Borate Glasses [J]. SILICON 10, 49–57 (2018). https://doi.org/10.1007/s12633-015-9354-z

    Article  CAS  Google Scholar 

  73. Y.C. Lu, Y.X. Li, R. Peng, H. Su, Z.H. Tao, M.Z. Chen, D.M. Chen, Low-temperature sintering and electrical properties of BBSZ glass-doped ZnO-based multilayer varistors. Int. J. AppL. Cearm. Tec. 17(2), 722–727 (2020). https://doi.org/10.1111/ijac.13367

    Article  CAS  Google Scholar 

  74. X. Zhao, M. Guo, Z.H. Zhang, W.D. Shi, B.Y. Zhang, X.B. Lyu, R. Wen, Y.P. Li, Enhancement in the long-term stability of ZnO varistor ceramics against DC aging by controlling intergranular phases [J]. J. Alloys Compd. 894, 162543 (2022). https://doi.org/10.1016/j.jallcom.2021.162543

    Article  CAS  Google Scholar 

  75. H.B. Huang, W. Sun, X. Wan, X.L. Yao, DC Aging Characteristics of ZnO Varistors[J]. Insul. Sur. Arrest. 4, 22–29 (2021). https://doi.org/10.16188/j.isa.1003-8337.2021.04.004

    Article  CAS  Google Scholar 

  76. J.H. Yuan, X. Zhang, X.Y. Huang, Y.P. Wang, C.G. Pan, Research on the Aging Mechanism of ZnO Varistor under the Direct Current Environment[J]. Insul. Sur. Arrest. 1, 143–147 (2018). https://doi.org/10.16188/j.isa.1003-8337.2018.01.026

    Article  Google Scholar 

  77. K. Cheng, W.Q. Wang, D.J. Liu, Q.Y. Xie, Y.X. Zhou, H.F. Zhao, Improved Direct-Current Aging Stability and Suppressed Leakage Current of Zinc Oxide Varistors by Co-doping with Boron, Gallium, and Yttrium[J]. J. Ceram. Sci. Technol. 11(2), 111–116 (2020). https://doi.org/10.4416/JCST2020-00008

    Article  Google Scholar 

  78. C.W. Nahm, Effect of cooling rate on electrical properties, impulse surge and dc-accelerated aging behaviors of ZPCCD-based varistors[J]. J. Mater. Sci. Mater. Electron. 20, 418–424 (2009). https://doi.org/10.1007/s10854-008-9745-7

    Article  CAS  Google Scholar 

  79. M. Ramanachalam, A. Rohatgi, J.P. Schaffer, T. Gupta, Characterization of ZnO varistor degradation using lifetime positron-annihilation spectroscopy[J]. J. Appl. Phys. 69, 8380–8386 (1991). https://doi.org/10.1063/1.347402

    Article  CAS  Google Scholar 

  80. K. Cheng, H.F. Zhao, Y.X. Zhou, Effect of B2O3 Doping on the Aging Characteristics of DC ZnO Varistor Ceramics[J]. Trans. Ch. Electro. Soci. 37(13), 3413–3421 (2022). https://doi.org/10.19595/j.cnki.1000-6753.tces.210626

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Program of State Grid Corporation of China (5216A8220009).

Funding

The Science and Technology Program of State Grid Corporation of China, 5216A8220009, Bo-wen Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-wen Wang or Peng-zhao Gao.

Ethics declarations

Conflict of interest

There is no interest conflict with others.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Bw., Lu, Jz., Gao, Pz. et al. Effects of radius and electronegativity of donors on the microstructure and mechanical, thermal, and electrical properties of ZnO varistors. J Electroceram (2024). https://doi.org/10.1007/s10832-024-00349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10832-024-00349-x

Keywords

Navigation