Skip to main content
Log in

Structural and electrical properties of ZnO–V2O5–TiO2–Co2O3–MnO varistor ceramics with low sintering temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the rapid development of electronic components toward miniaturization and integration, ZnO-based varistor ceramics sintered at a low temperature below 961 °C have received extensive attention. This work systematically explored the effect of sintering temperature on the microstructure and electrical properties of 98 mol%ZnO + 0.5 mol%V2O5 + 0.5 mol%TiO2 + 0.5 mol%Co2O3 + 0.5 mol%MnO (short for ZVTCM) ceramics prepared via a conventional solid-state method. The X-ray diffraction results revealed that all the ZVTCM ceramics consist of major ZnO grains, and minor secondary phases, including Zn3(VO4)2 and Mn2TiO4. Furthermore, the average grain size was found to increase from 2.69 to 11.42 μm until the sintering temperature reaches up to 925 °C. Higher sintering temperature results in an abnormal grain growth behavior and increased content of oxygen vacancies in ZVTCM ceramics, tending to degrade the varistor properties. Excellent varistor properties can be available in the ZVTCM ceramic sintered at 850 °C, involving a nonlinear coefficient (α) of 21.9, a leakage current density (JL) of 59.4 μA/cm2, and a breakdown electric field (E1mA) of 523 V/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)

    Article  CAS  Google Scholar 

  2. Y.Y. Gong, R.Q. Chu, Z.J. Xu, J. Sun, F.X. Chao, S. Ma, J.G. Hao, H.Y. Li, G.R. Li, Ceram. Int. 41, 9183 (2015)

    Article  CAS  Google Scholar 

  3. T.Y. Li, M. Zhao, X. Li, J. Mater. Sci.: Mater. Electron. 29, 2758 (2018)

    CAS  Google Scholar 

  4. T. Tian, L.Y. Zheng, M. Podlogar, Z.Y. Man, X.Z. Ruan, X. Shi, S. Bernik, G.R. Li, J. Eur. Ceram. Soc. 42, 2268 (2022)

    Article  CAS  Google Scholar 

  5. J.K. Liu, Z.Z. Li, S.H. Liu, R.K. Xu, J.J. Chen, J.F. Su, L. Li, W.B. Cao, J. Mater. Sci.: Mater. Electron. 33, 12104 (2022)

    CAS  Google Scholar 

  6. J.Z. Zhao, B.X. Wang, K. Lu, Ceram. Int. 40, 14229 (2014)

    Article  CAS  Google Scholar 

  7. F.C. Peng, D.C. Zhu, Ceram. Int. 44, 21034 (2018)

    Article  CAS  Google Scholar 

  8. A. Marino-Gamez, M. Miranda-Lopez, M. Hernandez, A. Bondarchuk, L. Falcon-Franco, L. Garica-Ortiz, J. Aguilar-Martinez, J. Alloy Compd. 880, 160529 (2021)

    Article  CAS  Google Scholar 

  9. G.Z. Zang, J. Du, R.Q. Chu, Z.J. Xu, J. Mater. Sci.: Mater. Electron. 30, 3865 (2019)

    CAS  Google Scholar 

  10. T.G. Wang, G.Q. Shao, W.J. Zhang, X.B. Li, X.H. Yu, Ceram. Int. 36, 1063 (2010)

    Article  CAS  Google Scholar 

  11. J.Y. Li, K.N. Wu, R. Jia, L.L. Hou, L. Gao, S.T. Li, Mater. Design 92, 546 (2016)

    Article  CAS  Google Scholar 

  12. M. Jiang, Z. Cheng, D. Zhao, L. Zhang, D. Xu, T. Nonferr, Metal. Soc. 32, 1589 (2022)

    CAS  Google Scholar 

  13. P.F. Meng, J. Hu, J.L. He, Mater. Lett. 195, 209 (2017)

    Article  CAS  Google Scholar 

  14. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    Article  CAS  Google Scholar 

  15. C.W. Nahm, Ceram. Int. 38, 6651 (2012)

    Article  CAS  Google Scholar 

  16. C.W. Nahm, J. Alloy Compd. 578, 132 (2013)

    Article  CAS  Google Scholar 

  17. T.K. Roy, Ceram. Int. 47, 35152 (2021)

    Article  CAS  Google Scholar 

  18. S. Roy, D. Das, T.K. Roy, J. Eur. Ceram. Soc. 41, 5184 (2021)

    Article  CAS  Google Scholar 

  19. M. Zhao, Y.H. Wang, X. Li, H.H. Song, T.T. Sun, Ceram. Int. 46, 20923 (2020)

    Article  CAS  Google Scholar 

  20. S. Roy, T.K. Roy, D. Das, Ceram. Int. 45, 24835 (2019)

    Article  CAS  Google Scholar 

  21. F. Kharchouche, J. Mater. Sci.: Mater. Electron. 29, 3891 (2018)

    CAS  Google Scholar 

  22. X. Qu, W.J. Sun, M.H. Wang, Y. Chen, H.P. Zhang, J. Mater. Sci.: Mater. Electron. 28, 1909 (2017)

    CAS  Google Scholar 

  23. H. Hng, K. Knowles, J. Am. Ceram. Soc. 83, 2455 (2000)

    Article  CAS  Google Scholar 

  24. C.W. Nahm, J. Am. Ceram. Soc. 94, 3227 (2011)

    Article  CAS  Google Scholar 

  25. C.W. Nahm, J. Mater. Sci.: Mater. Electron. 24, 4839 (2013)

    CAS  Google Scholar 

  26. M. Zhao, X. Li, Y. Shi, T.Y. Li, B.W. Li, Ceram. Int. 44, 6912 (2018)

    Article  CAS  Google Scholar 

  27. C.T. Kuo, C.S. Chen, I.N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)

    Article  CAS  Google Scholar 

  28. S. Rabaie, A.H. Khafagy, M.T. Dawoud, M.T. Attia, Bull. Mater. Sci. 38, 773 (2015)

    Article  Google Scholar 

  29. C.W. Nahm, J. Mater. Sci.: Mater. Electron. 22, 444 (2011)

    CAS  Google Scholar 

  30. C.W. Nahm, J. Rare Earth 32, 29 (2014)

    Article  CAS  Google Scholar 

  31. C.W. Nahm, Mat. Sci. Semicon. Proc. 16, 1308 (2013)

    Article  CAS  Google Scholar 

  32. M. Zhao, Y.H. Wang, T.T. Sun, H.H. Song, J. Mater. Sci.: Mater. Electron. 31, 8206 (2020)

    CAS  Google Scholar 

  33. H. Peng, B.Q. Shang, X. Wang, Z.H. Peng, X.L. Chao, P.F. Liang, Z.P. Yang, Ceram. Int. 44, 5768 (2018)

    Article  CAS  Google Scholar 

  34. T.Y. Li, X.W. Jiang, J. Li, A.W. Xie, J. Fu, R.Z. Zuo, A.C.S. Appl, Mater. Interfaces 14, 22263 (2022)

    Article  CAS  Google Scholar 

  35. T.Y. Li, W.J. Cao, P.F. Chen, J.S. Wang, C.C. Wang, J. Mat. Sci. 56, 13499 (2021)

    Article  CAS  Google Scholar 

  36. D. Huang, Z.F. Liu, Y.X. Li, Y. Liu, J. Alloy Compd. 698, 200 (2017)

    Article  CAS  Google Scholar 

  37. C.W. Nahm, Ceram. Int. 41, 5196 (2015)

    Article  CAS  Google Scholar 

  38. X.M. Li, J.Z. Song, Y.L. Liu, H.B. Zeng, Curr. Appl. Phys. 14, 521 (2014)

    Article  Google Scholar 

  39. T.Y. Li, F. Hong, K. Yang, B.B. Yue, N. Tamura, H. Wu, Z.X. Cheng, C.C. Wang, Sci. Bull. 65, 631 (2020)

    Article  CAS  Google Scholar 

  40. T.Y. Li, R.J. Si, J. Wang, S.T. Wang, J. Sun, C.C. Wang, J. Am. Ceram. Soc. 102, 6688 (2019)

    Article  CAS  Google Scholar 

  41. A. Biswas, U. Kar, N.R. Jana, Phys. Chem. Chem. Phys. 24, 13965 (2022)

    Article  CAS  Google Scholar 

  42. T.Y. Li, R.J. Si, J. Sun, S.T. Wang, J. Wang, R. Ahmed, G.B. Zhu, C.C. Wang, Sensor. Actuat. B-Chem. 293, 151–158 (2019)

    Article  CAS  Google Scholar 

  43. W.M. Zhong, X.G. Tang, Q.X. Liu, Y.P. Jiang, W.H. Li, J.L. Yue, Physical B 615, 413080 (2021)

    Article  CAS  Google Scholar 

  44. M.W. Yao, Q.X. Li, F. Li, Y. Peng, Z. Su, X. Yao, Mater. Chem. Phys. 206, 48 (2018)

    Article  CAS  Google Scholar 

  45. S.J. Chu, M. Zhang, H.L. Deng, Z.H. Wang, Y. Wang, Y.H. Pan, H. Yan, J. Alloy Compd. 689, 475 (2016)

    Article  CAS  Google Scholar 

  46. N.N. Luo, K. Han, L.J. Liu, B.L. Peng, X.P. Wang, C.Z. Hu, H.F. Zhou, Q. Feng, X.Y. Chen, Y.Z. Wei, J. Am. Ceram. Soc. 102, 4640 (2019)

    Article  CAS  Google Scholar 

  47. S.S. Wu, W.F. Zhu, L.J. Liu, D.P. Shi, S.Y. Zheng, Y.M. Huang, L. Fang, J. Electron Mater. 43, 1055 (2014)

    Article  CAS  Google Scholar 

  48. X.J. Sun, J.M. Deng, L.J. Liu, S.S. Liu, D.P. Shi, L. Fang, B. Elouadi, Mater. Res. Bull. 73, 437 (2016)

    Article  CAS  Google Scholar 

  49. S. Pandey, D. Kumar, O. Parkash, Ceram. Int. 42, 9686 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant No. 52072103 and U19A2087), the AHPU innovation team project (S022021058), the Scientific Research Starting Foundation of Anhui Polytechnic University (Grant No. 2021YQQ031), and the Natural Science Foundation of Anhui Polytechnic University (Grant No. Xjky2022029).

Funding

The National Natural Science Foundation of China, No. 52072103, Ruzhong Zuo, U19A2087, Ruzhong Zuo, the AHPU innovation team project, S022021058, Ruzhong Zuo, the Scientific Research Starting Foundation of Anhui Polytechnic University, 2021YQQ031, Tianyu Li, and the Natural Science Foundation of Anhui Polytechnic University, Xjky2022029, Tianyu Li

Author information

Authors and Affiliations

Authors

Contributions

TL contributed to investigation, writing of the original draft. WG, AX, and CZ contributed to investigation. DX contributed to editing. RZ contributed to validation, resources, and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Ruzhong Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 391 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Guo, W., Xie, A. et al. Structural and electrical properties of ZnO–V2O5–TiO2–Co2O3–MnO varistor ceramics with low sintering temperature. J Mater Sci: Mater Electron 34, 607 (2023). https://doi.org/10.1007/s10854-023-09935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09935-1

Navigation