Skip to main content

Advertisement

Log in

Study on the high impulse current withstand properties and failure mechanism of ZnO varistors with different Bi2O3 content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the effect of Bi2O3 content on the microstructure, mechanical, thermal, and electrical properties of ZnO varistors was investigated, and the high impulse current withstand properties and failure mechanism of ZnO varistors was discussed in detail. When content of Bi2O3 equaled to 0.75 mol%, the varistors possessed excellent mechanical, thermal, and electrical properties, where the value of σf and Ef were 130.77 MPa and 69.60 GPa, KT and λT were 6.504 W·(m·°C)−1 and 7.00 × 10–6 °C−1, E1mA, α, JL, and K were 272.13 V·mm–1, 55.96, 1.55 μA·cm–2, and 1.74, respectively, being due to the highest density and finest uniform grain size distribution. Finite Element Analysis (FEA) showed that the thermal stress decreased first and then increased with the increase of Bi2O3 content, where Ef and λT played a more important role than KT. And the loaded impulse current Ip can generate Joule heat to improve the temperature of ZnO varistors, thereby increasing the thermal stress and promoting the migration of dopants ions from ZnO to the Bi2O3 crystal lattice. Hence, JL increased and U1mA reduced, which further increased the thermal effect generated by Ip. When the value of Ip equaled to 100 kA, high temperature produced a loose microstructure and broken grains originated from the strong thermal stress. Meanwhile, the enhanced migration increased JL (3.77 μA·cm−2) and decreased U1mA (4.93 kV), resulting in a critical value of ΔU1 mA (9.88%). A further increase in Ip led to the failure of ZnO varistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F.A. Oma, The role of oxide optimization in improving the electrical properties of ZnO varistors. J Mater Sci: Mater Electron 32, 28553–28572 (2021). https://doi.org/10.1007/s10854-021-07234-1

    Article  CAS  Google Scholar 

  2. T.K. Gupta, Application of zinc oxide varistors. J Am Ceram Soc 73(7), 1817–1840 (1990)

    Article  CAS  Google Scholar 

  3. T. Tian, L. Zheng, M. Podlogar, Z. Man, X. Ruan, X. Shi, S. Bernik, G. Li, Influence of Ca-doping on the nonlinear properties of novel ZnO-Cr2O3-based varistor ceramics. J Eur Ceram Soc 42, 2268–2273 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.064

    Article  CAS  Google Scholar 

  4. Lu. Jiajia, L. Li, Bo. Zhou, X. Ma, H. Yan, Microstructure and electrical properties of In2O3, La2O3 and Ga2O3 doped ZnO-Bi2O3-MnO2-SiO2-TiO2 varistor ceramics. ECS J Solid State SC 10, 103014-1–103018 (2021). https://doi.org/10.1149/2162-8777/ac3059

    Article  CAS  Google Scholar 

  5. X. Zhao, J. Liang, J. Sun, J. Guo, S. Dursun, Ke. Wang, C.A. Randall, Cold sintering ZnO based varistor ceramics with controlled grain growth to realize superior breakdown electric field. J Eur Ceram Soc 41, 430–435 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.023

    Article  CAS  Google Scholar 

  6. D. Szwagierczak, J. Kulawik, A. Skwarek, Influence of processing on microstructure and electrical characteristics of multilayer varistors. J Adv Ceram 8(3), 408–417 (2019). https://doi.org/10.1007/s40145-019-0323-7

    Article  CAS  Google Scholar 

  7. A.M. Matsok, Non-ohmic properties of zinc oxide ceramies. Jpn J Appl Phy 10(6), 736–746 (1970)

    Article  Google Scholar 

  8. R.K. Sendi, Photothermal study of ZnO nanoparticle-Bi2O3-Mn2O3 ceramics doped with different compositions from Al2O3 at various sintering temperatures. ECS J Solid State SC 10, 053001 (2021). https://doi.org/10.1149/2162-8777/abfc22

    Article  CAS  Google Scholar 

  9. D.R. Clark, Varistor ceramic. J Am Ceram Soc 82(3), 485–501 (1999)

    Article  Google Scholar 

  10. W. Bowen, F. Zhen, H. Li, J. Hu, Z. Wang, Z. Fu, B. Chen, Y. Peng, Analysis of influence of different waveforms on current characteristics of zinc oxide varistor. High Voltage Apparatus 56(10), 159–166 (2020). https://doi.org/10.13296/j.1001-1609.hva.2020.10.001

    Article  CAS  Google Scholar 

  11. A. Vojta, D.R. Clarke, Electrical-impulse-induced fracture of zinc oxide varistor ceramics. J Am Ceram Soc 80, 2086–2092 (1997)

    Article  CAS  Google Scholar 

  12. X. Zhao, M. Guo, Z. Zhang, W. Shi, B. Zhang, X. Lyu, R. Wen, Y. Li, Enhancement in the long-term stability of ZnO varistor ceramics against DC aging by controlling intergranular phases. J Alloy Compd 894, 162543-1–8 (2022). https://doi.org/10.1016/j.jallcom.2021.162543

    Article  CAS  Google Scholar 

  13. N. Raidl, M. Hofstätter, P. Supancic, Piezotronic effect on electrical characteristics of bulk ZnO varistors. Adv Eng Mater 19(4), 1600677 (2017). https://doi.org/10.1002/adem.201600677

    Article  CAS  Google Scholar 

  14. M. Lengauer, D. RubesÏa, R. Danzer, Finite element modelling of the electrical impulse induced fracture of a high voltage varistor. J Eur Ceram Soc 20, 1017–1021 (2000)

    Article  CAS  Google Scholar 

  15. K.A. Taylor, E. Gjonaj, H. de Gersem, Coupled simulation of current flow and residual thermal stress in ZnO varistors. IEEE T Magn 56(1), 7504504 (2020). https://doi.org/10.1109/TMAG.2019.2952149

    Article  CAS  Google Scholar 

  16. M.A. Ramírez, F. Rubio-Marcos, J.F. Fernández, M. Lengauer, P.R. Bueno, E. Longo, J. Arana Varela, Mechanical properties and dimensional effects of ZnO- and SnO2-based varistors. J Am Ceram Soc 91(9), 3105–3108 (2008). https://doi.org/10.1111/j.1551-2916.2008.02568.x

    Article  CAS  Google Scholar 

  17. B. Balzer, M. Hagemeister, P. Kocher, L.J. Gauckler, Mechanical strength and microstructure of zinc oxide varistor ceramics. J Am Ceram Soc 87(10), 1932–1938 (2004)

    Article  CAS  Google Scholar 

  18. A. Boumezoued, K. Guergouri, R. Barille, D. Rechem, Z. Mourad, Synthesis and characterization of ZnO-based nanopowders: study of the effect of sintering temperature on the performance of ZnO-Bi2O3 varistors. J Mater Sci: Mater Electron 32, 3125–3139 (2021). https://doi.org/10.1007/s10854-020-05062-3

    Article  CAS  Google Scholar 

  19. B.-h Chen, B.-w Wang, P.-z Gao, P. Zhan, H.-h Chen, Effects of raw particle size and annealing on microstructure, electrical and mechanical behaviors of ZnO-based varistors. J Alloy Compd 872, 159638 (2021). https://doi.org/10.1016/j.jallcom.2021.159638

    Article  CAS  Google Scholar 

  20. B.-W. Wang, B.-H. Chen, P.-Z. Gao, H.-H. Chen, P. Zhang, Mechanism of Ga2O3 addition on the enhancement of electrical and mechanical properties of ZnO based varistor. Ceram Int 47, 4157–4165 (2021). https://doi.org/10.1016/j.ceramint.2020.09.293

    Article  CAS  Google Scholar 

  21. Fu. Zhiyao, J. He, Lu. Jiazheng, Z. Fang, B. Wang, Investigation of dielectric relaxation and degradation behavior of two-step sintered ZnO varistors. Ceram Int 45, 21900–21909 (2019). https://doi.org/10.1016/j.ceramint.2019.07.201

    Article  CAS  Google Scholar 

  22. A.R.C. Gerlt, A.K. Criner, L. Semiatin, E.J. Payton, On the grain size proportionality constants calculated in M.I. Mendelson’s “Average Grain Size in Polycrystalline Ceramics.” J Am Ceram Soc 102, 37–41 (2019). https://doi.org/10.1111/jace.15950

    Article  CAS  Google Scholar 

  23. K. Dimitriadis, D. Moschovas, D.U. Tulyaganov, S. Agathopoulos, Glass- ceramics in the CaO-MgO-Al2O3-SiO2 system as potential dental restorative materials. Int J Appl Ceram Tec 18, 1938–1949 (2021). https://doi.org/10.1111/ijac.13836

    Article  CAS  Google Scholar 

  24. J.-J. Tian, Y.-C. Cao, H. Tian, Y.-h Xu, G.-d Wang, Y.-J. Feng, Dynamic mechanical, thermal, and dielectric properties of ZnO varistor-epoxy composite material. J Mater Sci: Mater Electron 32, 13029–13039 (2021). https://doi.org/10.1007/s10854-021-05677-0

    Article  CAS  Google Scholar 

  25. Xiaolei Zhao, Xiao Yang, Hu. Jun, Qi. Li, Jinliang He, Globally reinforced mechanical, electrical, and thermal properties of nonlinear conductivity composites by surface treatment of varistor microspheres. Compos Sci Technol 175, 151–157 (2019). https://doi.org/10.1016/j.compscitech.2019.03.018

    Article  CAS  Google Scholar 

  26. X. Wang, X. Ren, Z. Li, W. You, H. Jiang, Yu. Wenqi, L. Jin, Z. Yao, L. Shi, A unique tuning effect of Mg on grain boundaries and grains of ZnO varistor ceramics. J Eur Ceram Soc 41, 2633–2640 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.12.024

    Article  CAS  Google Scholar 

  27. M. Zhao, H. Song, W. Cui, Z. Liu, H. Chen, Low temperature sintering and characterization of 0.25–1 mol% Bi2O3 doped ZnBiMnNbO based varistor ceramics. Ceram Int 47, 23362–23367 (2021). https://doi.org/10.1016/j.ceramint.2021.05.050

    Article  CAS  Google Scholar 

  28. C. Zhang, C. Li, D. Lv, H. Zhu, H. Xing, An experimental study on the effect of multiple lightning waveform parameters on the aging characteristics of ZnO varistors. Electronics 9, 930 (2020). https://doi.org/10.3390/electronics9060930

    Article  CAS  Google Scholar 

  29. Q. Guo, L. Zhang, F. Kong, Z. Zhang, S. Li, Effect of Ni2O3 doping on the electrical properties and intrinsic defect concentration of ZnO varistor ceramics. E3S Web of Conferences 185, 01019 (2020). https://doi.org/10.1051/e3sconf/202018501019

    Article  CAS  Google Scholar 

  30. P. Meng, X. Zhao, X. Yang, W. Jinbo, Q. Xie, J. He, H. Jun, J. He, Breakdown phenomenon of ZnO varistors caused by non-uniform distribution of internal pores. J Eur Ceram Soc 39, 4824–4830 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.06.043

    Article  CAS  Google Scholar 

  31. Zhang L, He J, Liu W, Zhang L, Li S, Li J, Zhou W, Zhang S (2018) Statistical investigation on the electrical responses of ZnO-based varistors to different impulse currents. In 12th IEEE International Conference on the Properties and Applications of Dielectric Materials-Xi’an-China, 295–299.

  32. F. Cui, Xu. Zhijun, R. Chu, G. Li, Improving electrical properties of ZnO-Bi2O3-Sb2O3-MnO2 varistors by doping with pre-synthesized Bi-Si-O phase. J Alloy Compd 836, 154692-1–154698 (2020). https://doi.org/10.1016/j.jallcom.2020.154692

    Article  CAS  Google Scholar 

  33. B. Cui, J. Ni, P. Peng, L. Shi, Du. Sanming, J. Liu, Xu. Dong, Flash sintering preparation and electrical properties of ZnO-Bi2O3-M (M =Cr2O3, MnO2 or Co2O3) varistor ceramics. Ceram Int 46, 14913–14918 (2020). https://doi.org/10.1016/j.ceramint.2020.03.018

    Article  CAS  Google Scholar 

  34. P. Peng, Y. Deng, J. Niu, L. Shi, Y. Mei, Du. Sanming, J. Liu, Xu. Dong, Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO-Bi2O3-MnO2 varistors. J Adv Ceram 9(6), 683–692 (2020). https://doi.org/10.1007/s40145-020-0404-7

    Article  CAS  Google Scholar 

  35. C. Zhang, H. Xing, P. Li, C. Li, D. Lv, S. Yang, An experimental study of the failure mode of ZnO varistors under multiple lightning strokes. Electronics 8, 172 (2019). https://doi.org/10.3390/electronics8020172

    Article  CAS  Google Scholar 

  36. Q.-H. Chen, J.-L. He, K.-X. Tan, S.-M. Chen, M.-y Yan, J.-X. Tang, Influence of grain size on distribution of temperature and thermal stress in ZnO varistor ceramics. Sci China Ser E 45(4), 337–347 (2002)

    CAS  Google Scholar 

  37. M.F. Catramby, C.N. Elias, A.L. do Vale, H.E.S. dos Santos, Effect of sintering process on microstructure, 4-point flexural strength, and grain size of yttria-stabilized tetragonal zirconia polycrystal for use in monolithic dental restorations. J Prosther Dent 125(5), 824e1-e8 (2021). https://doi.org/10.1016/j.prosdent.2021.01.022

    Article  CAS  Google Scholar 

  38. N. Kondo, Y. Suzuki, T. Miyajima, T. Ohji, High-temperature mechanical properties of sinter-forged silicon nitride with ytterbia additive. J Eur Ceram Soc 23, 809–815 (2003)

    Article  CAS  Google Scholar 

  39. S.-K. Choi, S.-M. Kang, J.-B. Lee, S.V. Shenderey, H.-H. Jung, J.-Y. Jung, H.-D. Kim, Surge energy capability of ZnO-based varistors according to the Sb2O3 and Bi2O3. J Nanosci Nanotechno 16, 12702–12707 (2016). https://doi.org/10.1166/jnn.2016.13690

    Article  CAS  Google Scholar 

  40. E.D. Bøjesen, M. Søndergaard, M. Christensen, B.B. Iversen, Particle size effects on the thermal conductivity of ZnO. AIP Conference Proceedings 1449, 335–338 (2012). https://doi.org/10.1063/1.4731565

    Article  CAS  Google Scholar 

  41. Uttam Sharma, Dron Mishra, Interpretation of thermal conductivity of ceramic oxides. AIP Conference Proceedings 2100, 0200424 (2019). https://doi.org/10.1063/1.5098596

    Article  CAS  Google Scholar 

  42. F. Hua, G.-l Zhang, Properties of Materials[M] (Peking University Press, 2010)

    Google Scholar 

  43. K.A. Taylor, E. Gjonaj, Z. Zhou, B. Xu, Mesoscopic modeling of the mechanically tunable electrical conductivity of ZnO varistors. J Appl Phys 127, 155104 (2020). https://doi.org/10.1063/1.5142231

    Article  CAS  Google Scholar 

  44. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3-Bi2O3-ZnO-CaO glasses. Ceram Int 45, 20724–20732 (2019). https://doi.org/10.1016/j.ceramint.2019.07.056

    Article  CAS  Google Scholar 

  45. J. Warych, W. Mielcarek, G. Lesiuk, On the relationship between modification of Bi2O3 by Sb and type of grain boundaries in ZnO-based varistors. Eng Fail Anal 122, 105251-1–11 (2021). https://doi.org/10.1016/j.engfailanal.2021.105251

    Article  CAS  Google Scholar 

  46. P. Shuk, H.-D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid electrolytes based on B2O3. Solid State Ionics 89, 179–196 (1996)

    Article  CAS  Google Scholar 

  47. K. Li, D. Xue, Estimation of electronegativity values of elements in different valence states. J Phys Chem A 110, 11332–11337 (2006). https://doi.org/10.1021/jp062886k

    Article  CAS  Google Scholar 

  48. P. Meng, H. Jun, J. He, Low-residual-voltage ZnO varistor ceramics improved by multiple doping with gallium and indium. Mater Lett 195, 209–212 (2017). https://doi.org/10.1016/j.matlet.2017.02.097

    Article  CAS  Google Scholar 

  49. C. Chen, Q. Liu, W. Li, S. Dong, M. Geng, J. Cheng, Influence of a Zn-Bi-Sb-O synthetic multi-phase on highly nonlinear properties of ZnO-Bi2O3 varistor ceramics. J Electron Mater 48(11), 7352–7359 (2019). https://doi.org/10.1007/s11664-019-07560-5

    Article  CAS  Google Scholar 

  50. R. Danzer, B. Kaufmann, P. Supancic. Failure of high power varistor ceramic components. J Eur Ceram Soc, 40 (2020) 3766–3770. DOI:https://doi.org/10.1016/j.jeurceramsoc.2020.02.007.

  51. S. T. Li, Senior Member, J. Q. He, J. J. Lin, H. Wang, W. F. Liu, Y. L. Liao. Electrical-Thermal Failure of Metal-Oxide Arrester by Successive Impulses. IEEE T Power Deliver, 31(6)(2016)2538–2545. DOI:10.1109/ TPWRD. 2015.2506785.

  52. Xin Peng, Yongping Pu, Xinyi Du, Jiamin Ji, Pan Gao, Lei Zhang, Zixiong Sun. Tailoring of ferroelectrics in (Na2O, K2O)-Nb2O5-SiO2 glass-ceramics via control the crystallization kinetics. Chem Eng J, 422 (2021)130027–1–8. DOI:https://doi.org/10.1016/j.cej.2021.130027.

  53. B. Yuting, B. Linghong, L. Ting, Preparation and hydrogen evolution performance of polyaniline coated NiSe electrode. Mater Sci Eng Powder Metall 26(4), 338–345 (2021)

    Google Scholar 

  54. Haibing Li, Huimin Zhang, Slapley Thayil, Aimin Chang, Xu Sang, Xiuhua Ma. Enhanced aging and thermal shock performance of Mn1.95-xCo0.21Ni0.84SrxO4 NTC ceramics. J Adv Ceram, 10(2)( 2021) 258–270. DOI: https://doi.org/10.1007/s40145-020-0436-z.

  55. Sauvik Raha, M. Ahmaruzzaman. Enhanced performance of a novel superparamagnetic g-C3N4/NiO/ZnO/ Fe3O4 nanohybrid photocatalyst for removal of esomeprazole: Effects of reaction parameters, co-existing substances and water matrices. Chem Eng J, 395 (2020) 124969–1–23. DOI:https://doi.org/10.1016/j.cej.2020.124969.

  56. Guihua Ren, Xuanyu Ren, Wentao Ju, Yinshan Jiang, Minglei Han. Zhiqiang Dong, Xiaodong Yang, Kuizhou Dou, Bing Xue, Fangfei Li. Controlled vertical growing of Bi2O3 nano sheets on diatomite disks and its high visible-light photocatalytic performance[J]. J Photoch Photobio A, 392(2020)112367–1–11. DOI:https://doi.org/10.1016/j.jphotochem. 2020.112367.

  57. Zhiqiang Chen, Luyao Wang, Haodan Xu, Qinxue Wen. Efficient heterogeneous activation of peroxymono-sulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A. Chem Eng J, 389(2020)124345–1–10. DOI:https://doi.org/10.1016/j.cej.2020.124345.

  58. W. Zhi-qiang, Y. Chun-liang, Qi. Yajun, Influence of Sb2O3 addition on the structure and crystallization properties of P2O5-ZnO system glass. J. Dalian Poly Univ. 34(1), 64–67 (2015)

    Google Scholar 

Download references

Funding

This work was supported by Science and Technology Project of the State Grid Corporation of China under grant 5216AF210004.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by B-wW and P-zG. The first draft of the manuscript was written by P-zG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bo-wen Wang or Peng-zhao Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Bw., Lu, Jz., Gao, Pz. et al. Study on the high impulse current withstand properties and failure mechanism of ZnO varistors with different Bi2O3 content. J Mater Sci: Mater Electron 33, 25446–25462 (2022). https://doi.org/10.1007/s10854-022-09249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09249-8

Navigation