Skip to main content
Log in

Review of current high-ZT thermoelectric materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoelectric materials are capable of converting heat and electricity to each other. Thermoelectric devices can be miniaturized and highly integrated with existing semiconductor chip systems with microgenerators or microrefrigerators. After years of research and accumulation, BiTe series, SnSe series, CuSe series, half-Heusler series, multicomponent oxides series, organic–inorganic composites series, and GeTe/PbTe series have been found to have excellent thermoelectric properties. According to theoretical calculation, when the diameter of Bi2Te3 nanowires is 5 Å, the ZT value reaches 14, and graphdiyne has a ZT value of 4.8 at 300 K. Experimental measurements revealed that the ZT value of n-type SnSe reached 2.8. This review would focus on the updated experimental and theoretical achievements of seven kinds of materials, including BiTe series, SnSe series, CuSe series, multicomponent oxides, half-Heusler alloys, organic–inorganic composites, and GeTe/PbTe series. The preparation method, microstructure characteristics, device structure, and thermoelectric properties of each material will be described in detail. By analyzing the performance of these materials, three possible development directions are put forward for how to further improve the thermoelectric properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461. https://doi.org/10.1126/science.1158899

    Article  CAS  Google Scholar 

  2. DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706. https://doi.org/10.1126/science.285.5428.703

    Article  CAS  Google Scholar 

  3. Liu W, Jie Q, Kim HS, Ren Z (2015) Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater 87:357–376. https://doi.org/10.1016/j.actamat.2014.12.042

    Article  CAS  Google Scholar 

  4. He W, Zhang G, Zhang X, Ji J, Li G, Zhao X (2015) Recent development and application of thermoelectric generator and cooler. Appl Energy 143:1–25. https://doi.org/10.1016/j.apenergy.2014.12.075

    Article  Google Scholar 

  5. Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R (2009) On-chip cooling by superlattice-based thin-film thermoelectrics. Nat Nanotechnol 4(4):235–238. https://doi.org/10.1038/nnano.2008.417

    Article  CAS  Google Scholar 

  6. Mao J, Zhu H, Ding Z, Liu Z, Gamage GA, Chen G, Ren Z (2019) High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365(6452):495–498. https://doi.org/10.1126/science.aax7792

    Article  CAS  Google Scholar 

  7. Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW (2015) Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230):109–114. https://doi.org/10.1126/science.aaa4166

    Article  CAS  Google Scholar 

  8. Tritt TM, Böttner H, Chen L (2011) Thermoelectrics: direct solar thermal energy conversion. MRS Bull 33(4):366–368. https://doi.org/10.1557/mrs2008.73

    Article  Google Scholar 

  9. Toberer GJ, Sae S (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114. https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  10. Lan Y, Minnich AJ, Chen G, Ren Z (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20(3):357–376. https://doi.org/10.1002/adfm.200901512

    Article  CAS  Google Scholar 

  11. Vining CB (2009) An inconvenient truth about thermoelectrics. Nat Mater 8(2):83–85. https://doi.org/10.1038/nmat2361

    Article  CAS  Google Scholar 

  12. Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272(5266):1325–1328. https://doi.org/10.1126/science.272.5266.1325

    Article  CAS  Google Scholar 

  13. Kim HS, Liu W, Chen G, Chu CW, Ren Z (2015) Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc Natl Acad Sci U S A 112(27):8205–8210. https://doi.org/10.1073/pnas.1510231112

    Article  CAS  Google Scholar 

  14. Goldsmid HJ, Douglas RW (1954) The use of semiconductors in thermoelectric refrigeration. Br J Appl Phys 5:386–390. https://doi.org/10.1088/0508-3443/5/11/303

    Article  Google Scholar 

  15. Slack GA (1995) CRC handbook of thermoelectrics. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, FL, p 407

    Google Scholar 

  16. Yu Y, Cagnoni M, Cojocaru-Miredin O, Wuttig M (2019) Chalcogenide thermoelectrics empowered by an unconventional bonding mechanism. Adv Funct Mater. https://doi.org/10.1002/adfm.201904862

    Article  Google Scholar 

  17. Zhao K, Qiu P, Shi X, Chen L (2019) Recent advances in liquid-like thermoelectric materials. Adv Funct Mater. https://doi.org/10.1002/adfm.201903867

    Article  Google Scholar 

  18. He J, Tritt TM (2017) Advances in thermoelectric materials research: looking back and moving forward. Science. https://doi.org/10.1126/science.aak9997

    Article  Google Scholar 

  19. Selvan KV, Hasan MN, Ali MSM (2019) State-of-the-art reviews and analyses of emerging research findings and achievements of thermoelectric materials over the past years. J Electron Mater 48(2):745–777. https://doi.org/10.1007/s11664-018-06838-4

    Article  CAS  Google Scholar 

  20. Li J, Pan Y, Wu C, Sun F, Wei T (2017) Processing of advanced thermoelectric materials. Sci China Technol Sci 60(9):1347–1364. https://doi.org/10.1007/s11431-017-9058-8

    Article  Google Scholar 

  21. Zeng Y-J, Wu D, Cao X-H, Zhou W-X, Tang L-M, Chen K-Q (2019) Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies. Adv Funct Mater. https://doi.org/10.1002/adfm.201903873

    Article  Google Scholar 

  22. Jin H, Li J, Iocozzia J, Zeng X, Wei P-C, Yang C, Li N, Liu Z, He JH, Zhu T, Wang J, Lin Z, Wang S (2019) Hybrid organic–inorganic thermoelectric materials and devices. Ange Chem Int Ed 58(43):15206–15226. https://doi.org/10.1002/anie.201901106

    Article  CAS  Google Scholar 

  23. Hicks LD, Dresselhaus MS (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B Condens Matter 47(24):16631–16634. https://doi.org/10.1103/physrevb.47.16631

    Article  CAS  Google Scholar 

  24. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B Condens Matter 47(19):12727–12731. https://doi.org/10.1103/physrevb.47.12727

    Article  CAS  Google Scholar 

  25. Lv HY, Liu HJ, Shi J, Tang XF, Uher C (2013) Optimized thermoelectric performance of Bi2Te3 nanowires. J Mater Chem A 1(23):6831–6838. https://doi.org/10.1039/c3ta10804j

    Article  CAS  Google Scholar 

  26. Zhang C, de la Mata M, Li Z, Belarre FJ, Arbiol J, Khor KA, Poletti D, Zhu B, Yan Q, Xiong Q (2016) Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy 30:630–638. https://doi.org/10.1016/j.nanoen.2016.10.056

    Article  CAS  Google Scholar 

  27. Saleemi M, Toprak MS, Li S, Johnsson M, Muhammed M (2012) Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J Mater Chem 22(2):725–730. https://doi.org/10.1039/c1jm13880d

    Article  CAS  Google Scholar 

  28. Lee E, Ko J, Kim J-Y, Seo W-S, Choi S-M, Lee KH, Shim W, Lee W (2016) Enhanced thermoelectric properties of Au nanodot-included Bi2Te3 nanotube composites. J Mater Chem C 4(6):1313–1319. https://doi.org/10.1039/c5tc03934g

    Article  CAS  Google Scholar 

  29. Cao YQ, Zhu TJ, Zhao XB (2008) Thermoelectric Bi2Te3 nanotubes synthesized by low-temperature aqueous chemical method. J Alloys Compd 449(1–2):109–112. https://doi.org/10.1016/j.jallcom.2006.01.116

    Article  CAS  Google Scholar 

  30. Kim C, Kim DH, Kim H, Chung JS (2012) Significant enhancement in the thermoelectric performance of a bismuth telluride nanocompound through brief fabrication procedures. ACS Appl Mater Interfaces 4(6):2949–2954. https://doi.org/10.1021/am3002764

    Article  CAS  Google Scholar 

  31. Zhang Q, Ai X, Wang W, Wang L, Jiang W (2014) Preparation of 1-D/3-D structured AgNWs/Bi2Te3 nanocomposites with enhanced thermoelectric properties. Acta Mater 73:37–47. https://doi.org/10.1016/j.actamat.2014.03.070

    Article  CAS  Google Scholar 

  32. An J, Han M-K, Kim S-J (2019) Synthesis of heavily Cu-doped Bi2Te3 nanoparticles and their thermoelectric properties. J Solid State Chem 270:407–412. https://doi.org/10.1016/j.jssc.2018.11.024

    Article  CAS  Google Scholar 

  33. Son JS, Choi MK, Han M-K, Park K, Kim J-Y, Lim SJ, Oh M, Kuk Y, Park C, Kim S-J, Hyeon T (2012) n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett 12(2):640–647. https://doi.org/10.1021/nl203389x

    Article  CAS  Google Scholar 

  34. Ju H, Kim M, Kim J (2016) Preparation of graphene sheets into one-dimensionally nanostructured bulk bismuth telluride for enhancing thermoelectric power factor. J Mater Sci Mater Electron 27(4):3427–3434. https://doi.org/10.1007/s10854-015-4175-9

    Article  CAS  Google Scholar 

  35. Kim D-H, Kim C, Ha D-W, Kim H (2011) Fabrication and thermoelectric properties of crystal-aligned nano-structured Bi2Te3. J Alloys Compd 509(17):5211–5215. https://doi.org/10.1016/j.jallcom.2011.02.059

    Article  CAS  Google Scholar 

  36. Liu C-J, Lai HC, Liu Y-L, Chen L-R (2012) High thermoelectric figure-of-merit in p-type nanostructured (Bi, Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering. J Mater Chem. https://doi.org/10.1039/c2jm15185e

    Article  Google Scholar 

  37. Shi W, Wu F, Wang K, Yang J, Song H, Hu X (2014) Preparation and thermoelectric properties of yttrium-doped Bi2Te3 flower-like nanopowders. J Electron Mater 43(9):3162–3168. https://doi.org/10.1007/s11664-014-3220-4

    Article  CAS  Google Scholar 

  38. Zhu H-T, Luo J, Liang J-K (2014) Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties. J Mater Chem A 2(32):12821–12826. https://doi.org/10.1039/c4ta02532f

    Article  CAS  Google Scholar 

  39. Ma S, Li C, Xing L, Mu X, Zhu W, Nie X, Sang X, Wei P, Zhang Q, Zhao W (2020) Effects of Ni magnetic nanoparticles on thermoelectric properties of n-type Bi2Te2.7Se0.3 materials. J Electron Mater. https://doi.org/10.1007/s11664-020-07956-8

    Article  Google Scholar 

  40. Dharmaiah P, Hong S-J (2017) Thermoelectric properties of Bi2Te3 nanocrystals with diverse morphologies obtained via modified hydrothermal method. J Electron Mater 46(5):3012–3019. https://doi.org/10.1007/s11664-016-5104-2

    Article  CAS  Google Scholar 

  41. Yu C, Zhang X, Leng M, Shaga A, Liu D, Chen F, Wang C (2013) Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods. J Alloys Compd 570:86–93. https://doi.org/10.1016/j.jallcom.2013.03.167

    Article  CAS  Google Scholar 

  42. Kumar S, Chaudhary D, Dhawan PK, Yadav RR, Khare N (2017) Bi2Te3-MWCNT nanocomposite: an efficient thermoelectric material. Ceram Int 43(17):14976–14982. https://doi.org/10.1016/j.ceramint.2017.08.017

    Article  CAS  Google Scholar 

  43. Liu S, Peng N, Bai Y, Ma D, Ma F, Xu K (2017) Fabrication of Cu-doped Bi2Te3 nanoplates and their thermoelectric properties. J Electron Mater 46(5):2697–2704. https://doi.org/10.1007/s11664-016-4913-7

    Article  CAS  Google Scholar 

  44. Kulsi C, Mitra M, Kargupta K, Banerjee D (2019) Thermoelectric properties of nanostructured bismuth telluride (Bi2Te3) with annealing time and its composite with reduced graphene oxide (RGO). J Mater Sci Mater Electron 30(2):1850–1860. https://doi.org/10.1007/s10854-018-0457-3

    Article  CAS  Google Scholar 

  45. Wang X-y, Wang H-j, Xiang B, Shang H-j, Zhu B, Yu Y, Jin H, Zhao R-f, Huang Z-y, Liu L-j, Zu F-q, Chen Z-g (2019) Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy. J Mater Sci 54(6):4788–4797. https://doi.org/10.1007/s10853-018-3172-9

    Article  CAS  Google Scholar 

  46. Vieira EMF, Figueira J, Pires AL, Grilo J, Silva MF, Pereira AM, Goncalves LM (2019) Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J Alloys Compd 774:1102–1116. https://doi.org/10.1016/j.jallcom.2018.09.324

    Article  CAS  Google Scholar 

  47. Wada K, Tomita K, Takashiri M (2017) Fabrication of bismuth telluride nanoplates via solvothermal synthesis using different alkalis and nanoplate thin films by printing method. J Cryst Growth 468:194–198. https://doi.org/10.1016/j.jcrysgro.2016.12.048

    Article  CAS  Google Scholar 

  48. Na J, Kim Y, Park T, Park C, Kim E (2016) Preparation of bismuth telluride films with high thermoelectric power factor. ACS Appl Mater Interfaces 8(47):32392–32400. https://doi.org/10.1021/acsami.6b10188

    Article  CAS  Google Scholar 

  49. Manzano CV, Abad B, Munoz Rojo M, Koh YR, Hodson SL, Lopez Martinez AM, Xu X, Shakouri A, Sands TD, Borca-Tasciuc T, Martin-Gonzalez M (2016) Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci Rep. https://doi.org/10.1038/srep19129

    Article  Google Scholar 

  50. Burton MR, Richardson SJ, Staniec PA, Terrill NJ, Elliott JM, Squires AM, White NM, Nandhakumar IS (2017) A novel route to nanostructured bismuth telluride films by electrodeposition. Electrochem Commun 76:71–74. https://doi.org/10.1016/j.elecom.2017.02.004

    Article  CAS  Google Scholar 

  51. Zhao D, Chen J, Ren Z, Chen J, Song Q, Zhang Q, Chen N, Jiang Y (2020) Thermoelectric transport and magnetoresistance of electrochemical deposited Bi2Te3 films at micrometer thickness. Ceram Int 46(3):3339–3344. https://doi.org/10.1016/j.ceramint.2019.10.043

    Article  CAS  Google Scholar 

  52. Wu Y, Lin Z, Tian Z, Han C, Liu J, Zhang H, Zhang Z, Wang Z, Dai L, Cao Y, Hu Z (2016) Fabrication of microstructured thermoelectric Bi2Te3 thin films by seed layer assisted electrodeposition. Mater Sci Semicond Process 46:17–22. https://doi.org/10.1016/j.mssp.2016.01.014

    Article  CAS  Google Scholar 

  53. Lei C, Burton MR, Nandhakumar IS (2016) Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol. Phys Chem Chem Phys 18(21):14164–14167. https://doi.org/10.1039/c6cp02360f

    Article  CAS  Google Scholar 

  54. Wu M, Nguyen HP, Vullers RJM, Vereecken PM, Binnemans K, Fransaer J (2013) Electrodeposition of bismuth telluride thermoelectric films from chloride-free ethylene glycol solutions. J Electrochem Soc 160(4):D196–D201. https://doi.org/10.1149/2.089304jes

    Article  CAS  Google Scholar 

  55. Lei C, Ryder KS, Koukharenko E, Burton M, Nandhakumar IS (2016) Electrochemical deposition of bismuth telluride thick layers onto nickel. Electrochem Commun 66:1–4. https://doi.org/10.1016/j.elecom.2016.02.005

    Article  CAS  Google Scholar 

  56. Zhou J, Li S, Soliman HMA, Toprak MS, Muhammed M, Platzek D, Mueller E (2009) Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films. J Alloys Compd 471(1–2):278–281. https://doi.org/10.1016/j.jallcom.2008.03.088

    Article  CAS  Google Scholar 

  57. Kato K, Hatasako Y, Uchino M, Nakata Y, Suzuki Y, Hayakawa T, Adachi C, Miyazaki K (2014) Flexible porous bismuth telluride thin films with enhanced figure of merit using micro-phase separation of block copolymer. Adv Mater Interfaces. https://doi.org/10.1002/admi.201300015

    Article  Google Scholar 

  58. Jin Q, Shi W, Zhao Y, Qiao J, Qiu J, Sun C, Lei H, Tai K, Jiang X (2018) Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics. ACS Appl Mater Interfaces 10(2):1743–1751. https://doi.org/10.1021/acsami.7b16356

    Article  CAS  Google Scholar 

  59. Manzano CV, Rojas AA, Decepida M, Abad B, Feliz Y, Caballero-Calero O, Borca-Tasciuc D-A, Martin-Gonzalez M (2013) Thermoelectric properties of Bi2Te3 films by constant and pulsed electrodeposition. J Solid State Electrochem 17(7):2071–2078. https://doi.org/10.1007/s10008-013-2066-7

    Article  CAS  Google Scholar 

  60. Pang EJX, Pickering SJ, Chan A, Wong KH, Lau PL (2012) N-type thermoelectric recycled carbon fibre sheet with electrochemically deposited Bi2Te3. J Solid State Chem 193:147–153. https://doi.org/10.1016/j.jssc.2012.04.046

    Article  CAS  Google Scholar 

  61. Li S, Toprak MS, Soliman HMA, Zhou J, Muhammed M, Platzek D, Mueller E (2006) Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition. Chem Mater 18(16):3627–3633. https://doi.org/10.1021/cm060171o

    Article  CAS  Google Scholar 

  62. Rashid MM, Cho KH, Chung G-S (2013) Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film. Appl Surf Sci 279:23–30. https://doi.org/10.1016/j.apsusc.2013.03.112

    Article  CAS  Google Scholar 

  63. Miyazaki Y, Kajitani T (2001) Preparation of Bi2Te3 films by electrodeposition. J Cryst Growth 229(1):542–546. https://doi.org/10.1016/s0022-0248(01)01225-8

    Article  CAS  Google Scholar 

  64. Goncalves LM, Couto C, Alpuim P, Rolo AG, Voelklein F, Correia JH (2010) Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films 518(10):2816–2821. https://doi.org/10.1016/j.tsf.2009.08.038

    Article  CAS  Google Scholar 

  65. Takashiri M, Takiishi M, Tanaka S, Miyazaki K, Tsukamoto H (2007) Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation. J Appl Phys. https://doi.org/10.1063/1.2717867

    Article  Google Scholar 

  66. Fan P, Zhang P-c, Liang G-x, Li F, Chen Y-x, Luo J-t, Zhang X-h, Chen S, Zheng Z-h (2020) High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.153027

    Article  Google Scholar 

  67. Budnik AV, Rogacheva EI, Pinegin VI, Sipatov AY, Fedorov AG (2013) Effect of initial bulk material composition on thermoelectric properties of Bi2Te3 thin films. J Electron Mater 42(7):1324–1329. https://doi.org/10.1007/s11664-012-2439-1

    Article  CAS  Google Scholar 

  68. Zou HL, Rowe DM, Min G (2001) Growth of p- and n-type bismuth telluride thin films by co-evaporation. J Cryst Growth 222(1–2):82–87. https://doi.org/10.1016/s0022-0248(00)00922-2

    Article  CAS  Google Scholar 

  69. Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang DM, Tan J, Sun DM, Hou PX, Chen XQ, Tai K, Gao N, Liu C, Cheng HM, Jiang X (2019) Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat Mater 18(1):62–68. https://doi.org/10.1038/s41563-018-0217-z

    Article  CAS  Google Scholar 

  70. Goto M, Sasaki M, Xu Y, Zhan T, Isoda Y, Shinohara Y (2017) Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology. Appl Surf Sci 407:405–411. https://doi.org/10.1016/j.apsusc.2017.02.187

    Article  CAS  Google Scholar 

  71. Shang H, Dun C, Deng Y, Li T, Gao Z, Xiao L, Gu H, Singh DJJ, Ren Z, Ding F (2020) Bi0.5Sb1.5Te3-based films for flexible thermoelectric devices. J Mater Chem A 8(8):4552–4561. https://doi.org/10.1039/c9ta13152c

    Article  CAS  Google Scholar 

  72. Marinho AA, Costa NP, Pereira LFC, Brito FA, Chesman C (2020) Thermoelectric properties of BiSbTe alloy nanofilms produced by DC sputtering: experiments and modeling. J Mater Sci 55(6):2429–2438. https://doi.org/10.1007/s10853-019-04188-y

    Article  CAS  Google Scholar 

  73. Liao C-N, She T-H (2007) Preparation of bismuth telluride thin films through interfacial reaction. Thin Solid Films 515(20–21):8059–8064. https://doi.org/10.1016/j.tsf.2007.03.086

    Article  CAS  Google Scholar 

  74. Takashiri M, Takano K, Hamada J (2018) Use of H-2-Ar gas mixtures in radio-frequency magnetron sputtering to produce high-performance nanocrystalline bismuth telluride thin films. Thin Solid Films 664:100–105. https://doi.org/10.1016/j.tsf.2018.08.036

    Article  CAS  Google Scholar 

  75. Deng Y, Liang H-m, Wang Y, Zhang Z-w, Tan M, Cui J-l (2011) Growth and transport properties of oriented bismuth telluride films. J Alloys Compd 509(18):5683–5687. https://doi.org/10.1016/j.jallcom.2011.02.123

    Article  CAS  Google Scholar 

  76. Kim DH, Byon E, Lee GH, Cho S (2006) Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering. Thin Solid Films 510(1–2):148–153. https://doi.org/10.1016/j.tsf.2005.12.306

    Article  CAS  Google Scholar 

  77. Zhou Y, Li L, Tan Q, Li J-F (2014) Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering. J Alloys Compd 590:362–367. https://doi.org/10.1016/j.jallcom.2013.12.136

    Article  CAS  Google Scholar 

  78. Rahman AAA, Umar AA, Chen X, Salleh MM, Oyama M (2016) Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping. Appl Phys A Mater Sci Process 122(2):1–8. https://doi.org/10.1007/s00339-016-9659-9

    Article  CAS  Google Scholar 

  79. Shang H, Gu H, Zhong Y, Ding F, Li G, Qu F, Zhang H, Dong Z, Zhang H, Zhou W (2017) Synergetic combination of Te content and deposition temperature to optimize thermoelectric properties using sputtered bismuth telluride films. J Alloys Compd 690:851–855. https://doi.org/10.1016/j.jallcom.2016.08.162

    Article  CAS  Google Scholar 

  80. Agarwal K, Mehta BR (2014) Structural, electrical, and thermoelectric properties of bismuth telluride: silicon/carbon nanocomposites thin films. J Appl Phys. https://doi.org/10.1063/1.4894145

    Article  Google Scholar 

  81. Wang X, He H, Wang N, Miao L (2013) Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Appl Surf Sci 276:539–542. https://doi.org/10.1016/j.apsusc.2013.03.130

    Article  CAS  Google Scholar 

  82. Cai Z, Fan P, Zheng Z, Liu P, Chen T, Cai X, Luo J, Liang G, Zhang D (2013) Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film. Appl Surf Sci 280:225–228. https://doi.org/10.1016/j.apsusc.2013.04.138

    Article  CAS  Google Scholar 

  83. Yamauchi K, Takashiri M (2017) Highly oriented crystal growth of nanocrystalline bismuth telluride thin films with anisotropic thermoelectric properties using two-step treatment. J Alloys Compd 698:977–983. https://doi.org/10.1016/j.jallcom.2016.12.284

    Article  CAS  Google Scholar 

  84. Uchino M, Kato K, Hagino H, Miyazaki K (2013) Fabrication by coaxial-type vacuum arc evaporation method and characterization of bismuth telluride thin films. J Electron Mater 42(7):1814–1819. https://doi.org/10.1007/s11664-012-2438-2

    Article  CAS  Google Scholar 

  85. Sudarshan C, Jayakumar S, Vaideki K, Sudakar C (2017) Effect of vacuum annealing on structural, electrical and thermal properties of e-beam evaporated Bi2Te3 thin films. Thin Solid Films 629:28–38. https://doi.org/10.1016/j.tsf.2017.03.043

    Article  CAS  Google Scholar 

  86. Zheng Z, Fan P, Liang G, Zhang D, Cai X, Chen T (2010) Annealing temperature influence on electrical properties of ion beam sputtered Bi2Te3 thin films. J Phys Chem Solids 71(12):1713–1716. https://doi.org/10.1016/j.jpcs.2010.09.012

    Article  CAS  Google Scholar 

  87. Murmu PP, Kennedy J, Suman S, Chong SV, Leveneur J, Storey J, Rubanov S, Ramanath G (2019) Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films. Mater Des. https://doi.org/10.1016/j.matdes.2018.107549

    Article  Google Scholar 

  88. Phuoc Huu L, Liao C-N, Luo CW, Leu J (2014) Thermoelectric properties of nanostructured bismuth-telluride thin films grown using pulsed laser deposition. J Alloys Compd 615:546–552. https://doi.org/10.1016/j.jallcom.2014.07.018

    Article  CAS  Google Scholar 

  89. Li YY, Qin XY, Li D, Zhang J, Li C, Liu YF, Song CJ, Xin HX, Guo HF (2016) Enhanced thermoelectric performance of Cu2Se/Bi0.4Sb1.6Te3 nanocomposites at elevated temperatures. Appl Phys Lett. https://doi.org/10.1063/1.4941757

    Article  Google Scholar 

  90. Chen S, Logothetis N, Ye L, Liu J (2015) A high performance Ag alloyed nano-scale n-type Bi2Te3 based thermoelectric material. Mater Today Proc 2(2):610–619. https://doi.org/10.1016/j.matpr.2015.05.083

    Article  Google Scholar 

  91. Hu L, Zhu T, Liu X, Zhao X (2014) Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater 24(33):5211–5218. https://doi.org/10.1002/adfm.201400474

    Article  CAS  Google Scholar 

  92. Fan S, Zhao J, Yan Q, Ma J, Hng HH (2011) Influence of nanoinclusions on thermoelectric properties of n-type Bi2Te3 nanocomposites. J Electron Mater 40(5):1018–1023. https://doi.org/10.1007/s11664-010-1487-7

    Article  CAS  Google Scholar 

  93. Yu F, Xu B, Zhang J, Yu D, He J, Liu Z, Tian Y (2012) Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks. Mater Res Bull 47(6):1432–1437. https://doi.org/10.1016/j.materresbull.2012.02.045

    Article  CAS  Google Scholar 

  94. Ovsyannikov SV, Shchennikov VV, Vorontsov GV, Manakov AY, Likhacheva AY, Kulbachinski VA (2008) Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. J Appl Phys. https://doi.org/10.1063/1.2973201

    Article  Google Scholar 

  95. Ni HL, Zhao XB, Zhu TJ, Ji XH, Tu JP (2005) Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites. J Alloys Compd 397(1–2):317–321. https://doi.org/10.1016/j.jallcom.2005.01.046

    Article  CAS  Google Scholar 

  96. Zhao L, He Y, Zhang H, Yi L, Wu J (2018) Enhancing the thermoelectric property of Bi2Te3 through a facile design of interfacial phonon scattering. J Alloys Compd 768:659–666. https://doi.org/10.1016/j.jallcom.2018.07.324

    Article  CAS  Google Scholar 

  97. We JH, Kim SJ, Kim GS, Cho BJ (2013) Improvement of thermoelectric properties of screen-printed Bi2Te3 thick film by optimization of the annealing process. J Alloys Compd 552:107–110. https://doi.org/10.1016/j.jallcom.2012.10.085

    Article  CAS  Google Scholar 

  98. Kato K, Hagino H, Miyazaki K (2013) Fabrication of bismuth telluride thermoelectric films containing conductive polymers using a printing method. J Electron Mater 42(7):1313–1318. https://doi.org/10.1007/s11664-012-2420-z

    Article  CAS  Google Scholar 

  99. Kinemuchi Y, Aoki T, Kaga H, Okanoue K, Ishiguro H, Watari K (2009) Deposition of bismuth telluride thick film by solidification under centrifugal pressure. J Electron Mater 38(7):1089–1092. https://doi.org/10.1007/s11664-008-0640-z

    Article  CAS  Google Scholar 

  100. Winkler M, Liu X, Koenig JD, Buller S, Schuermann U, Kienle L, Bensch W, Boettner H (2012) Electrical and structural properties of Bi2Te3 and Sb2Te3 thin films grown by the nanoalloying method with different deposition patterns and compositions. J Mater Chem 22(22):11323–11334. https://doi.org/10.1039/c2jm30363a

    Article  CAS  Google Scholar 

  101. Kim J, Duy LT, Ahn B, Seo H (2020) Pre-oxidation effects on properties of bismuth telluride thermoelectric composites compacted by spark plasma sintering. J Asian Ceram Soc 8(1):211–221. https://doi.org/10.1080/21870764.2020.1723197

    Article  Google Scholar 

  102. Xu ZJ, Hu LP, Ying PJ, Zhao XB, Zhu TJ (2015) Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)(2)Te-3 thermoelectric materials by hot deformation. Acta Mater 84:385–392. https://doi.org/10.1016/j.actamat.2014.10.062

    Article  CAS  Google Scholar 

  103. Li J, Tan Q, Li J-F, Liu D-W, Li F, Li Z-Y, Zou M, Wang K (2013) BiSbTe-based nanocomposites with HighZT: the effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater 23(35):4317–4323. https://doi.org/10.1002/adfm.201300146

    Article  CAS  Google Scholar 

  104. Pundir SK, Singh S, Jain P (2020) Spark plasma sintering effect on thermoelectric properties of nanostructured bismuth telluride synthesized by high energy ball milling. J Nanosci Nanotechnol 20(6):3902–3908. https://doi.org/10.1166/jnn.2020.17515

    Article  CAS  Google Scholar 

  105. Zhai R, Hu L, Wu H, Xu Z, Zhu TJ, Zhao X-B (2017) Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects. ACS Appl Mater Interfaces 9(34):28577–28585. https://doi.org/10.1021/acsami.7b08537

    Article  CAS  Google Scholar 

  106. Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X (2015) Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater. https://doi.org/10.1002/aenm.201500411

    Article  Google Scholar 

  107. Zhao LD, Zhang BP, Li JF, Zhang HL, Liu WS (2008) Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci 10(5):651–658. https://doi.org/10.1016/j.solidstatesciences.2007.10.022

    Article  CAS  Google Scholar 

  108. Ivanova LD, Granatkina YV, Mal'chev AG, Nikhezina IY, Emel'yanov MV, Nikulin DS (2020) Thermoelectric and mechanical properties of Pb-doped Sb2Te3-Bi2Te3 solid solutions. Inorg Mater 56(3):235–240. https://doi.org/10.1134/s002016852003005x

    Article  CAS  Google Scholar 

  109. Liu W-S, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang D, Chen G, Ren Z (2011) Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater 1(4):577–587. https://doi.org/10.1002/aenm.201100149

    Article  CAS  Google Scholar 

  110. Tang Z, Hu L, Zhu T, Liu X, Zhao X (2015) High performance n-type bismuth telluride based alloys for mid-temperature power generation. J Mater Chem C 3(40):10597–10603. https://doi.org/10.1039/c5tc02263k

    Article  CAS  Google Scholar 

  111. Hu LP, Liu XH, Xie HH, Shen JJ, Zhu TJ, Zhao XB (2012) Improving thermoelectric properties of n-type bismuth-telluride-based alloys by deformation-induced lattice defects and texture enhancement. Acta Mater 60(11):4431–4437. https://doi.org/10.1016/j.actamat.2012.05.008

    Article  CAS  Google Scholar 

  112. Li F, Huang X, Sun Z, Ding J, Jiang J, Jiang W, Chen L (2011) Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering. J Alloys Compd 509(14):4769–4773. https://doi.org/10.1016/j.jallcom.2011.01.155

    Article  CAS  Google Scholar 

  113. Kim JH, Cho H, Back SY, Yun JH, Lee HS, Rhyee J-S (2020) Lattice distortion and anisotropic thermoelectric properties in hot-deformed CuI-doped Bi2Te2.7Se0.3. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152649

    Article  Google Scholar 

  114. Liu D-W, Li J-F, Chen C, Zhang B-P (2011) Effects of SiC nanodispersion on the thermoelectric properties of p-type and n-type Bi2Te3-based alloys. J Electron Mater 40(5):992–998. https://doi.org/10.1007/s11664-010-1476-x

    Article  CAS  Google Scholar 

  115. Hu L, Gao H, Liu X, Xie H, Shen J, Zhu T, Zhao X (2012) Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. J Mater Chem 22(32):16484–16490. https://doi.org/10.1039/c2jm32916f

    Article  CAS  Google Scholar 

  116. Zhang Q, Ai X, Wang L, Chang Y, Luo W, Jiang W, Chen L (2015) Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater 25(6):966–976. https://doi.org/10.1002/adfm.201402663

    Article  CAS  Google Scholar 

  117. Sumithra S, Takas NJ, Misra DK, Nolting WM, Poudeu PFP, Stokes KL (2011) Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions. Adv Energy Mater 1(6):1141–1147. https://doi.org/10.1002/aenm.201100338

    Article  CAS  Google Scholar 

  118. Kuo C-H, Hwang C-S, Jeng M-S, Su W-S, Chou Y-W, Ku J-R (2010) Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering. J Alloys Compd 496(1–2):687–690. https://doi.org/10.1016/j.jallcom.2010.02.171

    Article  CAS  Google Scholar 

  119. Puneet P, Podila R, Karakaya M, Zhu S, He J, Tritt TM, Dresselhaus MS, Rao AM (2013) Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci Rep. https://doi.org/10.1038/srep03212

    Article  Google Scholar 

  120. Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602. https://doi.org/10.1038/35098012

    Article  CAS  Google Scholar 

  121. Chen S, Cai KF, Li FY, Shen SZ (2014) The effect of Cu addition on the system stability and thermoelectric properties of Bi2Te3. J Electron Mater 43(6):1966–1971. https://doi.org/10.1007/s11664-013-2928-x

    Article  CAS  Google Scholar 

  122. Kwon S-D, Ju B-K, Yoon S-J, Kim J-S (2009) Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition. J Electron Mater 38(7):920–924. https://doi.org/10.1007/s11664-009-0704-8

    Article  CAS  Google Scholar 

  123. You H, Baek SH, Kim K-C, Kwon OJ, Kim J-S, Park C (2012) Growth and thermoelectric properties of Bi2Te3 films deposited by modified MOCVD. J Cryst Growth 346(1):17–21. https://doi.org/10.1016/j.jcrysgro.2012.02.033

    Article  CAS  Google Scholar 

  124. Cao H, Venkatasubramanian R, Liu C, Pierce J, Yang H, Hasan MZ, Wu Y, Chen YP (2012) Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Appl Phys Lett. https://doi.org/10.1063/1.4760226

    Article  Google Scholar 

  125. Charles E, Groubert E, Boyer A (1988) Structural and electrical-properties of bismuth telluride films grown by the molecular-beam technique. J Mater Sci Lett 7(6):575–577. https://doi.org/10.1007/bf01730298

    Article  CAS  Google Scholar 

  126. Hamdou B, Kimling J, Dorn A, Pippel E, Rostek R, Woias P, Nielsch K (2013) Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. Adv Mater 25(2):239–244. https://doi.org/10.1002/adma.201202474

    Article  CAS  Google Scholar 

  127. Yamashita O, Odahara H (2006) Influence of annealing on the distribution of thermoelectric figure of merit in bismuth-telluride ingots. J Mater Sci 41(2):323–331. https://doi.org/10.1007/s10853-005-2209-z

    Article  CAS  Google Scholar 

  128. Shin WH, Roh JW, Ryu B, Chang HJ, Kim HS, Lee S, Seo WS, Ahn K (2018) Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 incorporation. ACS Appl Mater Interfaces 10(4):3689–3698. https://doi.org/10.1021/acsami.7b18451

    Article  CAS  Google Scholar 

  129. Yamashita O, Tomiyoshi S, Makita K (2003) Bismuth telluride compounds with high thermoelectric figures of merit. J Appl Phys 93(1):368–374. https://doi.org/10.1063/1.1525400

    Article  CAS  Google Scholar 

  130. Han M-K, Ahn K, Kim H, Rhyee J-S, Kim S-J (2011) Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement. J Mater Chem 21(30):11365–11370. https://doi.org/10.1039/c1jm10163c

    Article  CAS  Google Scholar 

  131. Wang S, Li H, Lu R, Zheng G, Tang X (2013) Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology. https://doi.org/10.1088/0957-4484/24/28/285702

    Article  Google Scholar 

  132. Yamashita O, Tomiyoshi S (2004) High performance n-type bismuth telluride with highly stable thermoelectric figure of merit. J Appl Phys 95(11):6277–6283. https://doi.org/10.1063/1.1712013

    Article  CAS  Google Scholar 

  133. Yamashita O, Tomiyoshi S (2004) Effect of annealing on thermoelectric properties of bismuth telluride compounds doped with various additives. J Appl Phys 95(1):161–169. https://doi.org/10.1063/1.1630363

    Article  CAS  Google Scholar 

  134. Zheng G, Su X, Liang T, Lu Q, Yan Y, Uher C, Tang X (2015) High thermoelectric performance of mechanically robust n-type Bi2Te3xSex prepared by combustion synthesis. J Mater Chem A 3(12):6603–6613. https://doi.org/10.1039/c5ta00470e

    Article  CAS  Google Scholar 

  135. Singh NK, Pandey J, Acharya S, Soni A (2018) Charge carriers modulation and thermoelectric performance of intrinsically p-type Bi2Te3 by Ge doping. J Alloys Compd 746:350–355. https://doi.org/10.1016/j.jallcom.2018.02.310

    Article  CAS  Google Scholar 

  136. Lin C, Cheng W, Guo Z, Chai G, Zhang H (2017) Exceptional thermoelectric performance of a "star-like'' SnSe nanotube with ultra-low thermal conductivity and a high power factor. Phys Chem Chem Phys 19(34):23247–23253. https://doi.org/10.1039/c7cp04508e

    Article  CAS  Google Scholar 

  137. Li C, Guo D, Li K, Shao B, Chen D, Ma Y, Sun J (2018) Excellent thermoelectricity performance of p-type SnSe along b axis. Phys B Condens Matter 530:264–269. https://doi.org/10.1016/j.physb.2017.11.074

    Article  CAS  Google Scholar 

  138. Wang FQ, Zhang S, Yu J, Wang Q (2015) Thermoelectric properties of single-layered SnSe sheet. Nanoscale 7(38):15962–15970. https://doi.org/10.1039/c5nr03813h

    Article  CAS  Google Scholar 

  139. Hong AJ, Li L, Zhu HX, Yan ZB, Liu JM, Ren ZF (2015) Optimizing the thermoelectric performance of low-temperature SnSe compounds by electronic structure design. J Mater Chem A 3(25):13365–13370. https://doi.org/10.1039/c5ta01703c

    Article  CAS  Google Scholar 

  140. Zhang Y, Hao S, Zhao L-D, Wolverton C, Zeng Z (2016) Pressure induced thermoelectric enhancement in SnSe crystals. J Mate Chem A 4(31):12073–12079. https://doi.org/10.1039/c6ta03625b

    Article  CAS  Google Scholar 

  141. Chang C, Wu M, He D, Pei Y, Wu C-F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J-F, He J, Zhao L-D (2018) 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360(6390):778–782. https://doi.org/10.1126/science.aaq1479

    Article  CAS  Google Scholar 

  142. Anh Tuan D, Van Quang N, Duvjir G, Van Thiet D, Kwon S, Song JY, Lee JK, Lee JE, Park S, Min T, Lee J, Kim J, Cho S (2016) Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals. Nat Commun. https://doi.org/10.1038/ncomms13713

    Article  Google Scholar 

  143. He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y-J, Dong J-F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J-M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook SJ, He J, Li J-F, Zhao L-D (2019) High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 365(6460):1418–1424. https://doi.org/10.1126/science.aax5123

    Article  CAS  Google Scholar 

  144. Ge Z-H, Qiu Y, Chen Y-X, Chong X, Feng J, Liu Z-K, He J (2019) Multipoint defect synergy realizing the excellent thermoelectric performance of n-type polycrystalline SnSe via Re doping. Adv Funct Mater. https://doi.org/10.1002/adfm.201902893

    Article  Google Scholar 

  145. Shi X, Zheng K, Hong M, Liu W, Moshwan R, Wang Y, Qu X, Chen Z-G, Zou J (2018) Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering. Chem Sci 9(37):7376–7389. https://doi.org/10.1039/c8sc02397b

    Article  CAS  Google Scholar 

  146. Li S, Wang Y, Chen C, Li X, Xue W, Wang X, Zhang Z, Cao F, Sui J, Liu X, Zhang Q (2018) Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe. Adv Sci. https://doi.org/10.1002/advs.201800598

    Article  Google Scholar 

  147. Chang C, Tan Q, Pei Y, Xiao Y, Zhang X, Chen Y-X, Zheng L, Gong S, Li J-F, He J, Zhao L-D (2016) Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Adv 6(100):98216–98220. https://doi.org/10.1039/c6ra21884a

    Article  CAS  Google Scholar 

  148. Wang X, Xu J, Liu G, Fu Y, Liu Z, Tan X, Shao H, Jiang H, Tan T, Jiang J (2016) Optimization of thermoelectric properties in n-type SnSe doped with BiCl3. Appl Phys Lett. https://doi.org/10.1063/1.4942890

    Article  Google Scholar 

  149. Li D, Tan X, Xu J, Liu G, Jin M, Shao H, Huang H, Zhang J, Jiang J (2017) Enhanced thermoelectric performance in n-type polycrystalline SnSe by PbBr2 doping. RSC Adv 7(29):17906–17912. https://doi.org/10.1039/c6ra28332b

    Article  CAS  Google Scholar 

  150. Van Quang N, Thi Huong N, Van Thiet D, Lee JE, Park S-D, Song JY, Park H-M, Anh Tuan D, Cho S (2018) Thermoelectric properties of hot-pressed Bi-doped n-type polycrystalline SnSe. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2500-y

    Article  Google Scholar 

  151. Wang W-t, Zheng Z-h, Li F, Li C, Fan P, Luo J-t, Li B (2018) Synthesis process and thermoelectric properties of n-type tin selenide thin films. J Alloys Compd 763:960–965. https://doi.org/10.1016/j.jallcom.2018.06.021

    Article  CAS  Google Scholar 

  152. Qin B, Wang D, He W, Zhang Y, Wu H, Pennycook SJ, Zhao L-D (2019) Realizing high thermoelectric performance in p-type SnSe through crystal structure modification. J Am Chem Soc 141(2):1141–1149. https://doi.org/10.1021/jacs.8b12450

    Article  CAS  Google Scholar 

  153. Wei W, Chang C, Yang T, Liu J, Tang H, Zhang J, Li Y, Xu F, Zhang Z, Li J-F, Tang G (2018) Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies. J Am Chem Soc 140(1):499–505. https://doi.org/10.1021/jacs.7b11875

    Article  CAS  Google Scholar 

  154. Zhao L-D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG (2016) Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351(6269):141–144. https://doi.org/10.1126/science.aad3749

    Article  CAS  Google Scholar 

  155. Shi X, Wu A, Liu W, Moshwan R, Wang Y, Chen Z-G, Zou J (2018) Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano 12(11):11417–11425. https://doi.org/10.1021/acsnano.8b06387

    Article  CAS  Google Scholar 

  156. Guo H, Xin H, Qin X, Zhang J, Li D, Li Y, Song C, Li C (2016) Enhanced thermoelectric performance of highly oriented polycrystalline SnSe based composites incorporated with SnTe nanoinclusions. J Alloys Compd 689:87–93. https://doi.org/10.1016/j.jallcom.2016.07.291

    Article  CAS  Google Scholar 

  157. Tang G, Liu J, Zhang J, Li D, Rara KH, Xu R, Lu W, Liu J, Zhang Y, Peng Z (2018) Realizing high thermoelectric performance below phase transition temperature in polycrystalline snse via lattice anharmonicity strengthening and strain engineering. ACS Appl Mater Interfaces 10(36):30558–30565. https://doi.org/10.1021/acsami.8b10056

    Article  CAS  Google Scholar 

  158. Luo Y, Cai S, Hua X, Chen H, Liang Q, Du C, Zheng Y, Shen J, Xu J, Wolverton C, Dravid VP, Yan Q, Kanatzidis MG (2019) High thermoelectric performance in polycrystalline SnSe via dual-doping with Ag/Na and nanostructuring with Ag8SnSe6. Adv Energy Mater. https://doi.org/10.1002/aenm.201803072

    Article  Google Scholar 

  159. Wang X, Xu J, Liu G-Q, Tan X, Li D, Shao H, Tan T, Jiang J (2017) Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe. Npg Asia Mater. https://doi.org/10.1038/am.2017.147

    Article  Google Scholar 

  160. Lee YK, Ahn K, Cha J, Zhou C, Kim HS, Choi G, Chae SI, Park J-H, Cho S-P, Park SH, Sung Y-E, Lee WB, Hyeon T, Chung I (2017) Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature. J Am Chem Soc 139(31):10887–10896. https://doi.org/10.1021/jacs.7b05881

    Article  CAS  Google Scholar 

  161. Ge Z-H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski RE, Qin P, Feng J, Zhao L-D (2017) Boosting the thermoelectric performance of (Na, K)-codoped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering. J Am Chem Soc 139(28):9714–9720. https://doi.org/10.1021/jacs.7b05339

    Article  CAS  Google Scholar 

  162. Jin M, Shao H, Hu H, Li D, Shen H, Xu J, Jiang J (2017) Growth and characterization of large size undoped p-type SnSe single crystal by horizontal Bridgman method. J Alloys Compd 712:857–862. https://doi.org/10.1016/j.jallcom.2017.04.110

    Article  CAS  Google Scholar 

  163. Chen Y-X, Ge Z-H, Yin M, Feng D, Huang X-Q, Zhao W, He J (2016) Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping. Adv Funct Mater 26(37):6836–6845. https://doi.org/10.1002/adfm.201602652

    Article  CAS  Google Scholar 

  164. Chu F, Zhang Q, Zhou Z, Hou D, Wang L, Jiang W (2018) Enhanced thermoelectric and mechanical properties of Na-doped polycrystalline SnSe thermoelectric materials via CNTs dispersion. J Alloys Compd 741:756–764. https://doi.org/10.1016/j.jallcom.2018.01.178

    Article  CAS  Google Scholar 

  165. Cai B, Li J, Sun H, Zhao P, Yu F, Zhang L, Yu D, Tian Y, Xu B (2017) Sodium doped polycrystalline SnSe: high pressure synthesis and thermoelectric properties. J Alloys Compd 727:1014–1019. https://doi.org/10.1016/j.jallcom.2017.08.223

    Article  CAS  Google Scholar 

  166. Yang SD, Nutor RK, Chen ZJ, Zheng H, Wu HF, Si JX (2017) Influence of sodium chloride doping on thermoelectric properties of p-type SnSe. J Electron Mater 46(11):6662–6668. https://doi.org/10.1007/s11664-017-5715-2

    Article  CAS  Google Scholar 

  167. Chien C-H, Chang C-C, Chen C-L, Tseng C-M, Wu Y-R, Wu M-K, Lee C-H, Chen Y-Y (2017) Facile chemical synthesis and enhanced thermoelectric properties of Ag doped SnSe nanocrystals. RSC Adv 7(54):34300–34306. https://doi.org/10.1039/c7ra05819e

    Article  CAS  Google Scholar 

  168. Chere EK, Zhang Q, Dahal K, Cao F, Mao J, Ren Z (2016) Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. J Mater Chem A 4(5):1848–1854. https://doi.org/10.1039/c5ta08847j

    Article  CAS  Google Scholar 

  169. Wubieneh TA, Chen C-L, Wei PC, Chen S-Y, Chen Y-Y (2016) The effects of Ge doping on the thermoelectric performance of p-type polycrystalline SnSe. RSC Adv 6(115):114825–114829. https://doi.org/10.1039/c6ra23904h

    Article  CAS  Google Scholar 

  170. Leng H-Q, Zhou M, Zhao J, Han Y-M, Li L-F (2016) The thermoelectric performance of anisotropic SnSe doped with Na. RSC Adv 6(11):9112–9116. https://doi.org/10.1039/c5ra19469e

    Article  CAS  Google Scholar 

  171. Leng H, Zhou M, Zhao J, Han Y, Li L (2015) Optimization of thermoelectric performance of anisotropic AgxSn1−xSe compounds. J Electron Mater 45(1):527–534. https://doi.org/10.1007/s11664-015-4143-4

    Article  CAS  Google Scholar 

  172. Liu S, Sun N, Liu M, Sucharitakul S, Gao XPA (2018) Nanostructured SnSe: synthesis, doping, and thermoelectric properties. J Appl Phys. https://doi.org/10.1063/1.5018860

    Article  Google Scholar 

  173. Jin M, Shi X-L, Feng T, Liu W, Feng H, Pantelides ST, Jiang J, Chen Y, Du Y, Zou J, Chen Z-G (2019) Super large Sn1xSe single crystals with excellent thermoelectric performance. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b21699

    Article  Google Scholar 

  174. Liu H, Zhang X, Li S, Zhou Z, Liu Y, Zhang J (2017) Synthesis and thermoelectric properties of SnSe by mechanical alloying and spark plasma sintering method. J Electron Mater 46(5):2629–2633. https://doi.org/10.1007/s11664-016-4833-6

    Article  CAS  Google Scholar 

  175. Hernandez JA, Ruiz A, Fonseca LF, Pettes MT, Jose-Yacaman M, Benitez A (2018) Thermoelectric properties of SnSe nanowires with different diameters. Sci Rep. https://doi.org/10.1038/s41598-018-30450-5

    Article  Google Scholar 

  176. Li J, Xu J, Wang H, Liu G-Q, Tan X, Shao H, Hu H, Jiang J (2018) Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping. J Mater Sci Mater Electron 29(21):18727–18732. https://doi.org/10.1007/s10854-018-9996-x

    Article  CAS  Google Scholar 

  177. Gao J, Zhu H, Mao T, Zhang L, Di J, Xu G (2017) The effect of Sm doping on the transport and thermoelectric properties of SnSe. Mater Res Bull 93:366–372. https://doi.org/10.1016/j.materresbull.2017.04.053

    Article  CAS  Google Scholar 

  178. Li F, Wang W, Ge Z-H, Zheng Z, Luo J, Fan P, Li B (2018) Enhanced thermoelectric properties of polycrystalline SnSe via LaCl3 doping. Materials. https://doi.org/10.3390/ma11020203

    Article  Google Scholar 

  179. Peng Z, He D, Mu X, Zhou H, Li C, Ma S, Ji P, Hou W, Wei P, Zhu W, Nie X, Zhao W (2018) Preparation and enhanced thermoelectric performance of Cu2Se-SnSe composite materials. J Electron Mater 47(6):3350–3357. https://doi.org/10.1007/s11664-018-6218-5

    Article  CAS  Google Scholar 

  180. Yang Z-R, Chen W-H, Liu C-J (2017) Synthesis and electronic transport of hydrothermally synthesized p-type Na-doped SnSe. J Electron Mater 46(5):2964–2968. https://doi.org/10.1007/s11664-016-5084-2

    Article  CAS  Google Scholar 

  181. Wang S, Hui S, Peng K, Bailey TP, Liu W, Yan Y, Zhou X, Tang X, Uher C (2018) Low temperature thermoelectric properties of p-type doped single-crystalline SnSe. Appl Phys Lett. https://doi.org/10.1063/1.5023125

    Article  Google Scholar 

  182. Ju H, Kim M, Park D, Kim J (2017) A strategy for low thermal conductivity and enhanced thermoelectric performance in SnSe: porous SnSe1-xSx nanosheets. Chem Mater 29(7):3228–3236. https://doi.org/10.1021/acs.chemmater.7b00423

    Article  CAS  Google Scholar 

  183. Chen ZJ, Shen T, Nutor RK, Yang SD, Wu HF, Si JX (2019) Influence of local heterojunction on the thermoelectric properties of Mo-SnSe multilayer films deposited by magnetron sputtering. J Electron Mater 48(2):1153–1158. https://doi.org/10.1007/s11664-018-06849-1

    Article  CAS  Google Scholar 

  184. Li X, Chen C, Xue W, Li S, Cao F, Chen Y, He J, Sui J, Liu X, Wang Y, Zhang Q (2018) N-type Bi-doped SnSe thermoelectric nanomaterials synthesized by a facile solution method. Inorg Chem 57(21):13800–13808. https://doi.org/10.1021/acs.inorgchem.8b02324

    Article  CAS  Google Scholar 

  185. Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377. https://doi.org/10.1038/nature13184

    Article  CAS  Google Scholar 

  186. Fu Y, Xu J, Liu G-Q, Yang J, Tan X, Liu Z, Qin H, Shao H, Jiang H, Liang B, Jiang J (2016) Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation. Journal Of Materials Chemistry C 4(6):1201–1207. https://doi.org/10.1039/c5tc03652f

    Article  CAS  Google Scholar 

  187. Yang S, Si J, Su Q, Wu H (2017) Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene. Mater Lett 193:146–149. https://doi.org/10.1016/j.matlet.2017.01.079

    Article  CAS  Google Scholar 

  188. Feng D, Ge Z-H, Wu D, Chen Y-X, Wu T, Li J, He J (2016) Enhanced thermoelectric properties of SnSe polycrystals via texture control. Phys Chem Chem Phys 18(46):31821–31827. https://doi.org/10.1039/c6cp06466c

    Article  CAS  Google Scholar 

  189. Li D, Li JC, Qin XY, Zhang J, Song CJ, Wang L, Xin HX (2017) Thermoelectric performance for SnSe hot-pressed at different temperature. J Electron Mater 46(1):79–84. https://doi.org/10.1007/s11664-016-4919-1

    Article  CAS  Google Scholar 

  190. Cho JY, Siyar M, Bae SH, Mun JS, Kim MY, Hong SH, Park C (2020) Effect of sintering pressure on electrical transport and thermoelectric properties of polycrystalline SnSe. Bull Mater Sci. https://doi.org/10.1007/s12034-020-2036-5

    Article  Google Scholar 

  191. Li Y, Li F, Dong J, Ge Z, Kang F, He J, Du H, Li B, Li J-F (2016) Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J Mater Chem C 4(10):2047–2055. https://doi.org/10.1039/c5tc04202j

    Article  CAS  Google Scholar 

  192. Hou S, Yuan D, Yan G, Wang J, Liang B, Fu G, Wang S (2018) The transverse thermoelectric effect in a-axis inclined oriented SnSe thin films. J Mater Chem C 6(47):12858–12863. https://doi.org/10.1039/c8tc04633f

    Article  CAS  Google Scholar 

  193. Chen C-L, Wang H, Chen Y-Y, Day T, Snyder GJ (2014) Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A 2(29):11171–11176. https://doi.org/10.1039/c4ta01643b

    Article  CAS  Google Scholar 

  194. Zhong B, Zhang Y, Li W, Chen Z, Cui J, Li W, Xie Y, Hao Q, He Q (2014) High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se. Appl Phys Lett. https://doi.org/10.1063/1.4896520

    Article  Google Scholar 

  195. Li M, Cortie DL, Liu J, Yu D, Islam SMKN, Zhao L, Mitchell DRG, Mole RA, Cortie MB, Dou S, Wang X (2018) Ultra-high thermoelectric performance in graphene incorporated Cu2Se: role of mismatching phonon modes. Nano Energy 53:993–1002. https://doi.org/10.1016/j.nanoen.2018.09.041

    Article  CAS  Google Scholar 

  196. Zhao L, Islam SMKN, Wang J, Cortie DL, Wang X, Cheng Z, Wang J, Ye N, Dou S, Shi X, Chen L, Snyder GJ, Wang X (2017) Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nano Energy 41:164–171. https://doi.org/10.1016/j.nanoen.2017.09.020

    Article  CAS  Google Scholar 

  197. Nunna R, Qiu P, Yin M, Chen H, Hanus R, Song Q, Zhang T, Chou M-Y, Agne MT, He J, Snyder GJ, Shi X, Chen L (2017) Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ Sci 10(9):1928–1935. https://doi.org/10.1039/c7ee01737e

    Article  CAS  Google Scholar 

  198. Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C (2013) Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx. Adv Mater 25(45):6607–6612. https://doi.org/10.1002/adma.201302660

    Article  CAS  Google Scholar 

  199. Hu Q, Zhu Z, Zhang Y, Li X-J, Song H, Zhang Y (2018) Remarkably high thermoelectric performance of Cu2-xLixSe bulks with nanopores. J Mater Chem A 6(46):23417–23424. https://doi.org/10.1039/c8ta06912c

    Article  CAS  Google Scholar 

  200. Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava AK, Singh S, Budhani RC, Dhar A (2015) Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy 13:36–46. https://doi.org/10.1016/j.nanoen.2015.02.008

    Article  CAS  Google Scholar 

  201. Liu J, Li M, Yang S, Zhang S, Feng J, Li C, Zhang P, Zhou L (2020) Enhanced thermoelectric and mechanical properties in hierarchical tubular porous cuprous selenide. Scr Mater 176:104–107. https://doi.org/10.1016/j.scriptamat.2019.09.009

    Article  CAS  Google Scholar 

  202. Tafti MY, Ballikaya S, Khachatourian AM, Noroozi M, Saleemi M, Han L, Nong NV, Bailey T, Uher C, Toprak MS (2016) Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis. RSC Adv 6(112):111457–111464. https://doi.org/10.1039/c6ra23005a

    Article  CAS  Google Scholar 

  203. Lu Y, Ding Y, Qiu Y, Cai K, Yao Q, Song H, Tong L, He J, Chen L (2019) Good performance and flexible PEDOT:PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b01718

    Article  Google Scholar 

  204. Hu Q, Zhang Y, Zhang Y, Li X-J, Song H (2020) High thermoelectric performance in Cu2Se/CDs hybrid materials. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152204

    Article  Google Scholar 

  205. Butt S, Xu W, Farooq MU, Ren GK, Zhang Q, Zhu Y, Khan SU, Liu L, Yu M, Mohmed F, Lin Y, Nan C-W (2016) Enhanced thermoelectricity in high-temperature beta-phase copper(I) selenides embedded with Cu2Te nanoclusters. ACS Appl Mater Interfaces 8(24):15196–15204. https://doi.org/10.1021/acsami.6b02086

    Article  CAS  Google Scholar 

  206. Yang L, Chen Z-G, Han G, Hong M, Zou J (2016) Impacts of Cu deficiency on the thermoelectric properties of Cu2-XSe nanoplates. Acta Mater 113:140–146. https://doi.org/10.1016/j.actamat.2016.04.050

    Article  CAS  Google Scholar 

  207. Yang L, Chen Z-G, Han G, Hong M, Zou Y, Zou J (2015) High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy 16:367–374. https://doi.org/10.1016/j.nanoen.2015.07.012

    Article  CAS  Google Scholar 

  208. Zhou C, Yu Y, Lee YK, Cojocaru-Miredin O, Yoo B, Cho S-P, Im J, Wuttig M, Hyeon T, Chung I (2018) High-performance n-type PbSe-Cu2Se thermoelectrics through conduction band engineering and phonon softening. J Am Chem Soc 140(45):15535–15545. https://doi.org/10.1021/jacs.8b10448

    Article  CAS  Google Scholar 

  209. Li M, Islam SMKN, Dou S, Wang X (2018) Significantly enhanced figure-of-merit in graphene nanoplate incorporated Cu2Se fabricated by spark plasma sintering. J Alloys Compd 769:59–64. https://doi.org/10.1016/j.jallcom.2018.07.353

    Article  CAS  Google Scholar 

  210. Yang L, Chen Z-G, Han G, Hong M, Huang L, Zou J (2016) Te-doped Cu2Se nanoplates with a high average thermoelectric figure of merit. J Mater Chem A 4(23):9213–9219. https://doi.org/10.1039/c6ta02998a

    Article  CAS  Google Scholar 

  211. Guan M, Zhao K, Qiu P, Ren D, Shi X, Chen L (2019) Enhanced thermoelectric performance of quaternary Cu2xAg2xSe1xSx liquid-like chalcogenides. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b01643

    Article  Google Scholar 

  212. Yu B, Liu W, Chen S, Wang H, Wang H, Chen G, Ren Z (2012) Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 1(3):472–478. https://doi.org/10.1016/j.nanoen.2012.02.010

    Article  CAS  Google Scholar 

  213. Islam SMKN, Li M, Aydemir U, Shi X, Chen L, Snyder GJ, Wang X (2018) Giant enhancement of the figure-of-merit over a broad temperature range in nano-boron incorporated Cu2Se. J Mater Chem A 6(38):18409–18416. https://doi.org/10.1039/c8ta05455j

    Article  CAS  Google Scholar 

  214. Zhu Z, Zhang Y, Song H, Li X-J (2018) Enhancement of thermoelectric performance of Cu1.98Se by Pb doping. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-018-2173-5

    Article  Google Scholar 

  215. Peng P, Gong ZN, Liu FS, Huang MJ, Ao WQ, Li Y, Li JQ (2016) Structure and thermoelectric performance of beta-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm. Intermetallics 75:72–78. https://doi.org/10.1016/j.intermet.2016.05.012

    Article  CAS  Google Scholar 

  216. Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11(5):422–425. https://doi.org/10.1038/nmat3273

    Article  CAS  Google Scholar 

  217. Butt S, Farooq MU, Mahmood W, Salam S, Sultan M, Basit MA, Ma J, Lin Y, Nan C-W (2019) One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. J Alloys Compd 786:557–564. https://doi.org/10.1016/j.jallcom.2019.01.359

    Article  CAS  Google Scholar 

  218. Li Y, Liu G, Cao T, Liu L, Li J, Chen K, Li L, Han Y, Zhou M (2016) Enhanced thermoelectric properties of Cu2SnSe3 by (Ag, In)-co-doping. Adv Funct Mater 26(33):6025–6032. https://doi.org/10.1002/adfm.201601486

    Article  CAS  Google Scholar 

  219. Liu FS, Huang MJ, Gong ZN, Ao WQ, Li Y, Li JQ (2015) Enhancing the thermoelectric performance of beta-Cu2Se by incorporating SnSe. J Alloys Compd 651:648–654. https://doi.org/10.1016/j.jallcom.2015.08.154

    Article  CAS  Google Scholar 

  220. Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, Takeuchi T (2019) Discovery of colossal Seebeck effect in metallic Cu2Se. Nat Commun. https://doi.org/10.1038/s41467-018-07877-5

    Article  Google Scholar 

  221. Liu W, Shi X, Hong M, Yang L, Moshwan R, Chen Z-G, Zou J (2018) Ag doping induced abnormal lattice thermal conductivity in Cu2Se+. J Mater Chem C 6(48):13225–13231. https://doi.org/10.1039/c8tc04129f

    Article  CAS  Google Scholar 

  222. Zhao K, Guan M, Qiu P, Blichfeld AB, Eikeland E, Zhu C, Ren D, Xu F, Iversen BB, Shi X, Chen L (2018) Thermoelectric properties of Cu2Se1xTex solid solutions. J Mater Chem A 6(16):6977–6986. https://doi.org/10.1039/c8ta01313f

    Article  CAS  Google Scholar 

  223. Liu S, Gong ZN, Huang MJ, Ao WQ, Li Y, Li JQ (2016) Enhanced thermoelectric properties of beta-Cu2Se by incorporating CuGaSe2. J Alloys Compd 688:521–526. https://doi.org/10.1016/j.jallcom.2016.07.218

    Article  CAS  Google Scholar 

  224. Tyagi K, Gahtori B, Bathula S, Jayasimhadri M, Singh NK, Sharma S, Haranath D, Srivastava AK, Dhar A (2015) Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide. J Phys Chem Solids 81:100–105. https://doi.org/10.1016/j.jpcs.2015.01.018

    Article  CAS  Google Scholar 

  225. Li D, Qin XY, Liu YF, Song CJ, Wang L, Zhang J, Xin HX, Guo GL, Zou TH, Sun GL, Ren BJ, Zhu XG (2014) Chemical synthesis of nanostructured Cu2Se with high thermoelectric performance. RSC Adv 4(17):8638–8644. https://doi.org/10.1039/c3ra47015f

    Article  CAS  Google Scholar 

  226. Zhu Y-B, Zhang B-P, Liu Y (2017) Enhancing thermoelectric performance of Cu2Se by doping Te. Phys Chem Chem Phys 19(40):27664–27669. https://doi.org/10.1039/c7cp05149b

    Article  CAS  Google Scholar 

  227. Ballikaya S, Chi H, Salvador JR, Uher C (2013) Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. J Mater Chem A 1(40):12478–12484. https://doi.org/10.1039/c3ta12508d

    Article  CAS  Google Scholar 

  228. Zhu Z, Zhang Y, Song H, Li X-J (2018) Enhancement of thermoelectric performance of Cu2Se by K doping. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-018-2299-5

    Article  Google Scholar 

  229. Wang J, Liu B, Miao N, Zhou J, Sun Z (2019) I-doped Cu2Se nanocrystals for high-performance thermoelectric applications. J Alloys Compd 772:366–370. https://doi.org/10.1016/j.jallcom.2018.08.291

    Article  CAS  Google Scholar 

  230. Weidi L, Xiaolei S, Moshwan R, Min H, Lei Y, Zhi-Gang C, Jin Z (2018) Enhancing thermoelectric performance of (Cu1xAgx)2Se via CuAgSe secondary phase and porous design. Sustain Mater Technol 17:62–69. https://doi.org/10.1016/j.susmat.2018.e00076

    Article  CAS  Google Scholar 

  231. Bailey TP, Hui S, Xie H, Olvera A, Poudeu PFP, Tang X, Uher C (2016) Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping. J Mater Chem A 4(43):17225–17235. https://doi.org/10.1039/c6ta06445k

    Article  CAS  Google Scholar 

  232. Tak J-Y, Nam WH, Lee C, Kim S, Lim YS, Ko K, Lee S, Seo W-S, Cho HK, Shim J-H, Park C-H (2018) Ultralow lattice thermal conductivity and significantly enhanced near-room-temperature thermoelectric figure of merit in alpha-Cu2Se through suppressed Cu vacancy formation by overstoichiometric Cu addition. Chem Mater 30(10):3276–3284. https://doi.org/10.1021/acs.chemmater.8b00254

    Article  CAS  Google Scholar 

  233. Kim MJ, Lee G-G, Kim W, Kim K, Tak J-Y, Shin WH, Seo W-S, Hong J, Lim YS (2019) Effects of Cl-doping on thermoelectric transport properties of Cu2Se prepared by spark plasma sintering. J Electron Mater 48(4):1958–1964. https://doi.org/10.1007/s11664-018-6708-5

    Article  CAS  Google Scholar 

  234. Xiao X-X, Xie W-J, Tang X-F, Zhang Q-J (2011) Phase transition and high temperature thermoelectric properties of copper selenide Cu2−xSe (0 <= x <= 0.25). Chin Phys B. https://doi.org/10.1088/1674-1056/20/8/087201

    Article  Google Scholar 

  235. Sun L, Jiang PH, Liu HJ, Fan DD, Liang JH, Wei J, Cheng L, Zhang J, Shi J (2015) Graphdiyne: a two-dimensional thermoelectric material with high figure of merit. Carbon 90:255–259. https://doi.org/10.1016/j.carbon.2015.04.037

    Article  CAS  Google Scholar 

  236. Famili M, Grace IM, Al-Galiby Q, Sadeghi H, Lambert CJ (2018) Toward high thermoelectric performance of thiophene and ethylenedioxythiophene (EDOT) molecular wires. Adv Funct Mater 28(15):1703135.https://doi.org/10.1002/adfm.201703135

    Article  CAS  Google Scholar 

  237. Ju D, Kim D, Yook H, Han JW, Cho K (2019) Controlling electrostatic interaction in PEDOT:PSS to overcome thermoelectric tradeoff relation. Adv Funct Mater 29(46):1905590. https://doi.org/10.1002/adfm.201905590

    Article  CAS  Google Scholar 

  238. Wang Y, Zhang SM, Deng Y (2016) Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J Mater Chem A 4(9):3554–3559. https://doi.org/10.1039/c6ta01140c

    Article  CAS  Google Scholar 

  239. Qinglin J, Xiaoqi L, Congcong L, Hui S, Zhengyou Z, Feng Z, Jingkun X, Fengxing J (2018) High-performance hybrid organic thermoelectric SWNTs/PEDOT:PSS thin-films for energy harvesting. Mater Chem Front 2(4):679–685. https://doi.org/10.1039/c7qm00515f

    Article  CAS  Google Scholar 

  240. Tang X, Liu T, Li H, Yang D, Chen L, Tang X (2017) Notably enhanced thermoelectric properties of lamellar polypyrrole by doping with beta-naphthalene sulfonic acid. RSC Adv 7(33):20192–20200. https://doi.org/10.1039/c7ra02302b

    Article  CAS  Google Scholar 

  241. Yusupov K, Zakhidov A, You S, Stumpf S, Martinez PM, Ishteev A, Vomiero A, Khovaylo V, Schubert U (2018) Influence of oriented CNT forest on thermoelectric properties of polymer-based materials. J Alloys Compd 741:392–397. https://doi.org/10.1016/j.jallcom.2018.01.010

    Article  CAS  Google Scholar 

  242. Wang L, Zhang Z, Liu Y, Wang B, Fang L, Qiu J, Zhang K, Wang S (2018) Exceptional thermoelectric properties of flexible organic–inorganic hybrids with monodispersed and periodic nanophase. Nat Commun 9(1):3817. https://doi.org/10.1038/s41467-018-06251-9

    Article  CAS  Google Scholar 

  243. Li Y, Lin J, Xie H, Wang Y, Li Z (2020) Raising the thermoelectric performance of PbS with low-content polyparaphenylene. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-020-03214-z

    Article  Google Scholar 

  244. Sun Y, Qiu L, Tang L, Geng H, Wang H, Zhang F, Huang D, Xu W, Yue P, Guan Y-s, Jiao F, Sun Y, Tang D, Di C-a, Yi Y, Zhu D (2016) Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater 28(17):3351–3358. https://doi.org/10.1002/adma.201505922

    Article  CAS  Google Scholar 

  245. Ju H, Kim M, Kim J (2015) A facile fabrication of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid structures and their improved thermoelectric performance. Chem Eng J 275:102–112. https://doi.org/10.1016/j.cej.2015.04.042

    Article  CAS  Google Scholar 

  246. Mitra M, Kulsi C, Kargupta K, Ganguly S, Banerjee D (2018) Composite of polyaniline-bismuth selenide with enhanced thermoelectric performance. J Appl Polym Sci. https://doi.org/10.1002/app.46887

    Article  Google Scholar 

  247. Park GO, Roh JW, Kim J, Lee KY, Jang B, Lee KH, Lee W (2014) Enhanced thermoelectric properties of germanium powder/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) composites. Thin Solid Films 566:14–18. https://doi.org/10.1016/j.tsf.2014.07.011

    Article  CAS  Google Scholar 

  248. See KC, Feser JP, Chen CE, Majumdar A, Urban JJ, Segalman RA (2010) Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett 10(11):4664–4667. https://doi.org/10.1021/nl102880k

    Article  CAS  Google Scholar 

  249. Kim S, Ryu SH, Kwon YT, Lim H-R, Park K-R, Song Y, Choa Y-H (2017) Synthesis and thermoelectric characterization of high density Ag2Te nanowire/PMMA nanocomposites. Mater Chem Phys 190:187–193. https://doi.org/10.1016/j.matchemphys.2017.01.019

    Article  CAS  Google Scholar 

  250. Liu Y, Song Z, Zhang Q, Zhou Z, Tang Y, Wang L, Zhu J, Luo W, Jiang W (2015) Preparation of bulk AgNWs/PEDOT:PSS composites: a new model towards high-performance bulk organic thermoelectric materials. RSC Adv 5(56):45106–45112. https://doi.org/10.1039/c5ra05551b

    Article  CAS  Google Scholar 

  251. Li J, Du Y, Jia R, Xu J, Shen SZ (2017) Thermoelectric properties of flexible PEDOT: PSS/polypyrrole/paper nanocomposite films. Materials. https://doi.org/10.3390/ma10070780

    Article  Google Scholar 

  252. Park D, Ju H, Kim J (2020) Effect of SrTiO3 nanoparticles in conductive polymer on the thermoelectric performance for efficient thermoelectrics. Polymers. https://doi.org/10.3390/polym12040777

    Article  Google Scholar 

  253. Xu Q, Xu S-M, Tian R, Lu C (2020) Significantly enhanced thermoelectric properties of organic–inorganic hybrids with a periodically ordered structure. ACS Appl Mater Interfaces 12(11):13371–13377. https://doi.org/10.1021/acsami.0c00949

    Article  CAS  Google Scholar 

  254. Wang YY, Cai KF, Yao X (2012) One-pot fabrication and enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene)-Bi2S3 nanocomposites. J Nanopart Res. https://doi.org/10.1007/s11051-012-0848-y

    Article  Google Scholar 

  255. Xu Q, Qu S, Ming C, Qiu P, Yao Q, Zhu C, Wei T-R, He J, Shi X, Chen L (2020) Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energy Environ Sci 13(2):511–518. https://doi.org/10.1039/c9ee03776d

    Article  CAS  Google Scholar 

  256. Fan Z, Du D, Guan X, Ouyang J (2018) Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface. Nano Energy 51:481–488. https://doi.org/10.1016/j.nanoen.2018.07.002

    Article  CAS  Google Scholar 

  257. Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12(8):719–723. https://doi.org/10.1038/nmat3635

    Article  CAS  Google Scholar 

  258. Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10(6):429–433. https://doi.org/10.1038/nmat3012

    Article  CAS  Google Scholar 

  259. Sarabia-Riquelme R, Ramos-Fernandez G, Martin-Gullon I, Weisenberger MC (2016) Synergistic effect of graphene oxide and wet-chemical hydrazine/deionized water solution treatment on the thermoelectric properties of PEDOT:PSS sprayed films. Synth Met 222:330–337. https://doi.org/10.1016/j.synthmet.2016.11.013

    Article  CAS  Google Scholar 

  260. Luo J, Billep D, Waechtler T, Otto T, Toader M, Gordan O, Sheremet E, Martin J, Hietschold M, Zahnd DRT, Gessner T (2013) Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. J Mater Chem A 1(26):7576–7583. https://doi.org/10.1039/c3ta11209h

    Article  CAS  Google Scholar 

  261. Zhu Z, Liu C, Jiang Q, Shi H, Jiang F, Xu J, Xiong J, Liu E (2015) Optimizing the thermoelectric properties of PEDOT:PSS films by combining organic co-solvents with inorganic base. J Mater Sci Mater Electron 26(11):8515–8521. https://doi.org/10.1007/s10854-015-3523-0

    Article  CAS  Google Scholar 

  262. Kyaw AKK, Yemata TA, Wang X, Lim SL, Chin WS, Hippalgaonkar K, Xu J (2018) Enhanced thermoelectric performance of PEDOT:PSS films by sequential post-treatment with formamide. Macromol Mater Eng. https://doi.org/10.1002/mame.201700429

    Article  Google Scholar 

  263. Song H, Kong F, Liu C, Xu J, Jiang Q, Shi H (2013) Improved thermoelectric performance of PEDOT:PSS film treated with camphorsulfonic acid. J Polym Res. https://doi.org/10.1007/s10965-013-0316-0

    Article  Google Scholar 

  264. Pires AL, Cruz IF, Silva J, Oliveira GNP, Ferreira-Teixeira S, Lopes AML, Araujo JP, Fonseca J, Pereira C, Pereira AM (2019) Printed flexible mu-thermoelectric device based on hybrid Bi2Te3/PVA composites. ACS Appl Mater Interfaces 11(9):8969–8981. https://doi.org/10.1021/acsami.8b18081

    Article  CAS  Google Scholar 

  265. Fan Z, Ouyang J (2019) Thermoelectric Properties of PEDOT:PSS. Adv Electron Mater. https://doi.org/10.1002/aelm.201800769

    Article  Google Scholar 

  266. An CJ, Kang YH, Song H, Jeong Y, Cho SY (2019) Highly integrated and flexible thermoelectric module fabricated by brush-cast doping of a highly aligned carbon nanotube web. ACS Appl Energy Mater 2(2):1093–1101. https://doi.org/10.1021/acsaem.8b01673

    Article  CAS  Google Scholar 

  267. Tian R, Wan C, Hayashi N, Aoai T, Koumoto K (2018) Wearable and flexible thermoelectrics for energy harvesting. MRS Bull 43(3):193–198. https://doi.org/10.1557/mrs.2018.8

    Article  CAS  Google Scholar 

  268. Ou C, Sangle AL, Datta A, Jing Q, Busolo T, Chalklen T, Narayan V, Kar-Narayan S (2018) Fully printed organic–inorganic nanocomposites for flexible thermoelectric applications. ACS Appl Mater Interfaces 10(23):19580–19587. https://doi.org/10.1021/acsami.8b01456

    Article  CAS  Google Scholar 

  269. Kim D, Ju D, Cho K (2018) Heat-sink-free flexible organic thermoelectric generator vertically operating with chevron structure. Adv Mater Technol. https://doi.org/10.1002/admt.201700335

    Article  Google Scholar 

  270. Qu D, Li X, Chen G (2019) Fabrication and properties of flexible thermoelectric devices. Chem J Chin Univ Chin 40(4):617–623. https://doi.org/10.7503/cjcu20190050

    Article  CAS  Google Scholar 

  271. Zhou X, Pan C, Liang A, Wang L, Wan T, Yang G, Gao C, Wong WY (2019) Enhanced figure of merit of poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) and SWCNT thermoelectric composites by doping with FeCl3. J Appl Polym Sci. https://doi.org/10.1002/app.47011

    Article  Google Scholar 

  272. Wang Y, Yu C, Liu G, Sheng M, Deng Y (2018) An effective thermal treatment strategy for thermoelectric performance enhancement in PANI/Te nanorod hybrid film. Mater Lett 229:293–296. https://doi.org/10.1016/j.matlet.2018.07.042

    Article  CAS  Google Scholar 

  273. Xue QY, Liu HJ, Fan DD, Cheng L, Zhao BY, Shi J (2016) LaPtSb: a half-Heusler compound with high thermoelectric performance. Phys Chem Chem Phys 18(27):17912–17916. https://doi.org/10.1039/c6cp03211g

    Article  CAS  Google Scholar 

  274. Yu J, Fu C, Liu Y, Xia K, Aydemir U, Chasapis TC, Snyder GJ, Zhao X, Zhu T (2018) Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Adv Energy Mater. https://doi.org/10.1002/aenm.201701313

    Article  Google Scholar 

  275. Hoat DM (2019) Electronic structure and thermoelectric properties of Ta-based half-Heusler compounds with 18 valence electrons. Comput Mater Sci 159:470–477. https://doi.org/10.1016/j.commatsci.2018.12.039

    Article  CAS  Google Scholar 

  276. Zhu H, Mao J, Li Y, Sun J, Wang Y, Zhu Q, Li G, Song Q, Zhou J, Fu Y, He R, Tong T, Liu Z, Ren W, You L, Wang Z, Luo J, Sotnikov A, Bao J, Nielsch K, Chen G, Singh DJ, Ren Z (2019) Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat Commun. https://doi.org/10.1038/s41467-018-08223-5

    Article  Google Scholar 

  277. Shutoh N, Sakurada S (2005) Thermoelectric properties of the TiX(Zr0.5Hf0.5)1−XNiSn half-Heusler compounds. J Alloys Compd 389(1–2):204–208. https://doi.org/10.1016/j.jallcom.2004.05.078

    Article  CAS  Google Scholar 

  278. Sakurada S, Shutoh N (2005) Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds. Appl Phys Lett. https://doi.org/10.1063/1.1868063

    Article  Google Scholar 

  279. Chen L, Liu Y, He J, Tritt TM, Poon SJ (2017) High thermoelectric figure of merit by resonant dopant in half-Heusler alloys. AIP Adv. https://doi.org/10.1063/1.4986760

    Article  Google Scholar 

  280. Populoh S, Aguirre MH, Brunko OC, Galazka K, Lu Y, Weidenkaff A (2012) High figure of merit in (Ti, Zr, Hf)NiSn half-Heusler alloys. Scr Mater 66(12):1073–1076. https://doi.org/10.1016/j.scriptamat.2012.03.002

    Article  CAS  Google Scholar 

  281. Zhao H, Cao B, Li S, Liu N, Shen J, Li S, Jian J, Gu L, Pei Y, Snyder GJ, Ren Z, Chen X (2017) Engineering the thermoelectric transport in half-Heusler materials through a bottom-up nanostructure synthesis. Adv Energy Mater. https://doi.org/10.1002/aenm.201700446

    Article  Google Scholar 

  282. Chen S, Lukas KC, Liu W, Opeil CP, Chen G, Ren Z (2013) Effect of Hf concentration on thermoelectric properties of nanostructured N-type half-Heusler materials HfxZr1-xNiSn0.99Sb0.01. Adv Energy Mater 3(9):1210–1214. https://doi.org/10.1002/aenm.201300336

    Article  CAS  Google Scholar 

  283. Yu C, Zhu T-J, Shi R-Z, Zhang Y, Zhao X-B, He J (2009) High-performance half-Heusler thermoelectric materials Hf1xZrxNiSn1ySby prepared by levitation melting and spark plasma sintering. Acta Mater 57(9):2757–2764. https://doi.org/10.1016/j.actamat.2009.02.026

    Article  CAS  Google Scholar 

  284. Lee S, Du NV, Dat NM, Eun-Ji M, Lim C-H, Rahman JU, Kim M-H (2015) Thermoelectric properties of n-type half-Heusler compounds synthesized by the induction melting method. Trans Electr Electron Mater 16(6):342–345. https://doi.org/10.4313/teem.2015.16.6.342

    Article  Google Scholar 

  285. Van Nguyen D, Rahman JU, Meang E-J, Lim C-H, Shin WH, Seo W-S, Pham Thanh H, Kim MH, Lee S (2019) Synthesis and thermoelectric properties of Ti-substituted (Hf0.5Zr0.5)(1–x)TixNiSn0.998Sb0.002 half-Heusler compounds. J Alloys Compd 773:1141–1145. https://doi.org/10.1016/j.jallcom.2018.09.268

    Article  CAS  Google Scholar 

  286. Zhang H, Wang Y, Dahal K, Mao J, Huang L, Zhang Q, Ren Z (2016) Thermoelectric properties of n-type half-Heusler compounds (Hf0.25Zr0.75)(1–x)NbxNiSn. Acta Mater 113:41–47. https://doi.org/10.1016/j.actamat.2016.04.039

    Article  CAS  Google Scholar 

  287. Berry T, Fu C, Auffermann G, Fecher GH, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H, Felser C (2017) Enhancing thermoelectric performance of TiNiSn half-Heusler compounds via modulation doping. Chem Mater 29(16):7042–7048. https://doi.org/10.1021/acs.chemmater.7b02685

    Article  CAS  Google Scholar 

  288. Misra DK, Bhardwaj A, Singh S (2014) Enhanced thermoelectric performance of a new half-Heusler derivative Zr9Ni7Sn8 bulk nanocomposite: enhanced electrical conductivity and low thermal conductivity. J Mater Chem A 2(30):11913–11921. https://doi.org/10.1039/c4ta01380h

    Article  CAS  Google Scholar 

  289. Galazka K, Populoh S, Xie W, Yoon S, Saucke G, Hulliger J, Weidenkaff A (2014) Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. J Appl Phys. https://doi.org/10.1063/1.4874798

    Article  Google Scholar 

  290. Shen Q, Zhang LM, Chen LD, Goto T, Hirai T (2001) Thermoelectric properties of ZrNiSn-based half-Heusler compounds by solid state reaction method. J Mater Sci Lett 20(24):2197–2199. https://doi.org/10.1023/a:1017928800031

    Article  CAS  Google Scholar 

  291. Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner GP, Uher C (2001) Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl Phys Lett 79(25):4165–4167. https://doi.org/10.1063/1.1425459

    Article  CAS  Google Scholar 

  292. Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G, Ren Z (2017) Thermoelectric properties of n-type ZrNiPb-based half-Heuslers. Chem Mater 29(2):867–872. https://doi.org/10.1021/acs.chemmater.6b04898

    Article  CAS  Google Scholar 

  293. Mallick MM, Rajput K, Vitta S (2019) Increasing figure-of-merit of ZrNiSn half-Heusler alloy by minimal substitution and thermal conductivity reduction. J Mater Sci Mater Electron 30(6):6139–6147. https://doi.org/10.1007/s10854-019-00915-y

    Article  CAS  Google Scholar 

  294. Ran H, Hangtian Z, Jingying S, Jun M, Reith H, Shuo C, Schierning G, Nielsch K, Zhifeng R (2017) Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M = Hf, Zr). Mater Today Phys 1:24–30. https://doi.org/10.1016/j.mtphys.2017.05.002

    Article  Google Scholar 

  295. Yan X, Liu W, Wang H, Chen S, Shiomi J, Esfarjani K, Wang H, Wang D, Chen G, Ren Z (2012) Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2. Energy Environ Sci. https://doi.org/10.1039/c2ee21554c

    Article  Google Scholar 

  296. Xia K, Liu Y, Anand S, Snyder GJ, Xin J, Yu J, Zhao X, Zhu T (2018) Enhanced thermoelectric performance in 18-electron Nb0.8CoSb half-Heusler compound with intrinsic Nb vacancies. Adv Funct Mater. https://doi.org/10.1002/adfm.201705845

    Article  Google Scholar 

  297. Rausch E, Balke B, Ouardi S, Felser C (2014) Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. Phys Chem Chem Phys 16(46):25258–25262. https://doi.org/10.1039/c4cp02561j

    Article  CAS  Google Scholar 

  298. Qiu P, Huang X, Chen X, Chen L (2009) Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. J Appl Phys. https://doi.org/10.1063/1.3238363

    Article  Google Scholar 

  299. Zhang H, Wang Y, Huang L, Chen S, Dahal H, Wang D, Ren Z (2016) Synthesis and thermoelectric properties of n-type half-Heusler compound VCoSb with valence electron count of 19. J Alloys Compd 654:321–326. https://doi.org/10.1016/j.jallcom.2015.09.082

    Article  CAS  Google Scholar 

  300. Zhou M, Chen L, Feng C, Wang D, Li J-F (2007) Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1xTaxCoSb. J Appl Phys. https://doi.org/10.1063/1.2738460

    Article  Google Scholar 

  301. Zhao D, Wang L, Bo L, Wu D (2018) Synthesis and thermoelectric properties of Ni-doped ZrCoSb half-Heusler compounds. Metals. https://doi.org/10.3390/met8010061

    Article  Google Scholar 

  302. Maji P, Makongo JPA, Zhou X, Chi H, Uher C, Poudeu PFP (2013) Thermoelectric performance of nanostructured p-type Zr0.5Hf0.5Co0.4Rh0.6Sb1xSnx half-Heusler alloys. J Solid State Chem 202:70–76. https://doi.org/10.1016/j.jssc.2013.03.024

    Article  CAS  Google Scholar 

  303. Maji P, Takas NJ, Misra DK, Gabrisch H, Stokes K, Poudeu PFP (2010) Effects of Rh on the thermoelectric performance of the p-type half-Heusler alloys. J Solid State Chem 183(5):1120–1126. https://doi.org/10.1016/j.jssc.2010.03.023

    Article  CAS  Google Scholar 

  304. Zhu H, He R, Mao J, Zhu Q, Li C, Sun J, Ren W, Wang Y, Liu Z, Tang Z, Sotnikov A, Wang Z, Broido D, Singh DJ, Chen G, Nielsch K, Ren Z (2018) Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat Commun. https://doi.org/10.1038/s41467-018-04958-3

    Article  Google Scholar 

  305. Zhao D, Zuo M, Bo L, Wang Y (2018) Synthesis and thermoelectric properties of Pd-doped ZrCoBi half-Heusler compounds. Materials. https://doi.org/10.3390/ma11050728

    Article  Google Scholar 

  306. Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T (2015) Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun. https://doi.org/10.1038/ncomms9144

    Article  Google Scholar 

  307. Fu C, Wu H, Liu Y, He J, Zhao X, Zhu T (2016) Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Adv Sci. https://doi.org/10.1002/advs.201600035

    Article  Google Scholar 

  308. Fu C, Zhu T, Liu Y, Xie H, Zhao X (2015) Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ Sci 8(1):216–220. https://doi.org/10.1039/c4ee03042g

    Article  CAS  Google Scholar 

  309. Liu Z, Guo S, Wu Y, Mao J, Zhu Q, Zhu H, Pei Y, Sui J, Zhang Y, Ren Z (2019) Design of high-performance disordered half-Heusler thermoelectric materials using 18-electron rule. Adv Funct Mater 29(44):1905044. https://doi.org/10.1002/adfm.201905044

    Article  CAS  Google Scholar 

  310. Silpawilawan W, Ohishi Y, Muta H, Yamanaka S, Kurosaki K (2018) Thermoelectric properties of p-type half-Heusler compounds FeNb0.9M0.1Sb (M = Ti, Zr, Hf). Mater Trans 59(7):1030–1034. https://doi.org/10.2320/matertrans.E-M2018806

    Article  CAS  Google Scholar 

  311. Hea R, Kraemer D, Mao J, Zeng L, Jie Q, Lan Y, Li C, Shuai J, Kim HS, Liu Y, Broido D, Chu C-W, Chen G, Ren Z (2016) Achieving high power factor and output power density in p-type half-Heuslers Nb1xTixFeSb. Proc Natl Acad Sci USA 113(48):13576–13581. https://doi.org/10.1073/pnas.1617663113

    Article  CAS  Google Scholar 

  312. Downie RA, MacLaren DA, Smith RI, Bos JWG (2013) Enhanced thermoelectric performance in TiNiSn-based half-Heuslers. Chem Commun 49(39):4184–4186. https://doi.org/10.1039/c2cc37121a

    Article  CAS  Google Scholar 

  313. Berry T, Ouardi S, Fecher GH, Balke B, Kreiner G, Auffermann G, Schnelle W, Felser C (2017) Improving thermoelectric performance of TiNiSn by mixing MnNiSb in the half-Heusler structure. Phys Chem Chem Phys 19(2):1543–1550. https://doi.org/10.1039/c6cp06859f

    Article  CAS  Google Scholar 

  314. Lkhagvasuren E, Ouardi S, Fecher GH, Auffermann G, Kreiner G, Schnelle W, Felser C (2017) Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn. AIP Adv. https://doi.org/10.1063/1.4979816

    Article  Google Scholar 

  315. Lei Y, Wang M, Li Y, Gao W, Wan R, Cheng C (2017) Microwave synthesis, microstructure, and thermoelectric properties of Zr substituted ZrxTi1xNiSn half-Heusler bulks. Mater Lett 201:189–193. https://doi.org/10.1016/j.matlet.2017.05.023

    Article  CAS  Google Scholar 

  316. Bhardwaj A, Misra DK (2014) Improving the thermoelectric performance of TiNiSn half-Heusler via incorporating submicron lamellae eutectic phase of Ti70.5Fe29.5: a new strategy for enhancing the power factor and reducing the thermal conductivity. J Mater Chem A 2(48):20980–20989. https://doi.org/10.1039/c4ta04661g

    Article  CAS  Google Scholar 

  317. Misra DK, Rajput A, Bhardwaj A, Chauhan NS, Singh S (2015) Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Appl Phys Lett. https://doi.org/10.1063/1.4914504

    Article  Google Scholar 

  318. Bhamu KC, Praveen CS (2017) Thermoelectric properties of 2H-CuGaO2 for device applications: a first principle TB-mBJ potential study. J Solid State Chem 256:101–108. https://doi.org/10.1016/j.jssc.2017.08.008

    Article  CAS  Google Scholar 

  319. Fiorentini V, Farris R, Argiolas E, Maccioni MB (2019) High thermoelectric figure of merit and thermopower in layered perovskite oxides. Phys Rev Mater. https://doi.org/10.1103/PhysRevMaterials.3.022401

    Article  Google Scholar 

  320. Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K (2007) Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 6(2):129–134. https://doi.org/10.1038/nmat1821

    Article  CAS  Google Scholar 

  321. Funahashi R, Matsubara I, Ikuta H, Takeuchi T, Mizutani U, Sodeoka S (2000) An oxide single crystal with high thermoelectric performance in air. Jpn J Appl Phys Part 2 Lett 39(11B):1127–1129. https://doi.org/10.1143/jjap.39.L1127

    Article  Google Scholar 

  322. Park K, Son JS, Woo SI, Shin K, Oh M-W, Park S-D, Hyeon T (2014) Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles. J Mater Chem A 2(12):4217–4224. https://doi.org/10.1039/c3ta14699e

    Article  CAS  Google Scholar 

  323. Sugahara T, Ohtaki M, Souma T (2008) Thermoelectric properties of double-perovskite oxide Sr2xMxFeMoO6 (M = Ba, La). J Ceram Soc Jpn 116(1360):1278–1282. https://doi.org/10.2109/jcersj2.116.1278

    Article  CAS  Google Scholar 

  324. Mishra A, Bhattacharjee S (2017) Effect of A- or B-site doping of perovskite calcium manganite on structure, resistivity, and thermoelectric properties. J Am Ceram Soc 100(10):4945–4953. https://doi.org/10.1111/jace.15015

    Article  CAS  Google Scholar 

  325. Khan TT, Ur S-C (2018) Thermoelectric Properties of the perovskite-type oxide SrTi1xNbxO3 synthesized by solid-state reaction method. Electron Mater Lett 14(3):336–341. https://doi.org/10.1007/s13391-018-0029-y

    Article  CAS  Google Scholar 

  326. Guo J, Legum B, Anasori B, Wang K, Lelyukh P, Gogotsi Y, Randall CA (2018) Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv Mater. https://doi.org/10.1002/adma.201801846

    Article  Google Scholar 

  327. Li F, Li J-F, Zhao L-D, Xiang K, Liu Y, Zhang B-P, Lin Y-H, Nan C-W, Zhu H-M (2012) Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci 5(5):7188–7195. https://doi.org/10.1039/c2ee21274a

    Article  CAS  Google Scholar 

  328. Ren GK, Butt S, Liu YC, Lan JL, Lin YH, Nan CW, Fu F, Tang XF (2014) Enhanced thermoelectric performance of Zn-doped oxyselenides: BiCu1xZnxSeO. Physica Status Solidi A Appl Mater Sci 211(11):2616–2620. https://doi.org/10.1002/pssa.201431347

    Article  CAS  Google Scholar 

  329. Khan TT, Kim I-H, Ur S-C (2019) Improvement of the thermoelectric properties of the perovskite SrTiO3 by Cr-doping. J Electron Mater 48(4):1864–1869. https://doi.org/10.1007/s11664-018-6623-9

    Article  CAS  Google Scholar 

  330. Kosuga A, Wang Y, Yubuta K, Koumoto K, Funahashi R (2010) Thermoelectric properties of polycrystalline Ca0.9Yb0.1MnO3 prepared from nanopowder obtained by gas-phase reaction and its application to thermoelectric power devices. Jpn J Appl Phys. https://doi.org/10.1143/jjap.49.071101

    Article  Google Scholar 

  331. Yasukawa M, Kono T, Ueda K, Yanagi H, Kim SW, Hosono H (2013) Thermoelectric properties and figure of merit of perovskite-type Ba(1–x)La(x)SnO(3)with x=0.002–0.008. Solid State Commun 172:49–53. https://doi.org/10.1016/j.ssc.2013.08.018

    Article  CAS  Google Scholar 

  332. Kun R, Populoh S, Karvonen L, Gumbert J, Weidenkaff A, Busse M (2013) Structural and thermoelectric characterization of Ba substituted LaCoO3 perovskite-type materials obtained by polymerized gel combustion method. J Alloys Compd 579:147–155. https://doi.org/10.1016/j.jallcom.2013.05.019

    Article  CAS  Google Scholar 

  333. Lan J-L, Liu Y-C, Zhan B, Lin Y-H, Zhang B, Yuan X, Zhang W, Xu W, Nan CW (2013) Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv Mater 25(36):5086–5090. https://doi.org/10.1002/adma.201301675

    Article  CAS  Google Scholar 

  334. Ren G, Butt S, Zeng C, Liu Y, Zhan B, Lan J, Lin Y, Nan C (2015) Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides. J Electron Mater 44(6):1627–1631. https://doi.org/10.1007/s11664-014-3495-5

    Article  CAS  Google Scholar 

  335. Fujita K, Mochida T, Nakamura K (2001) High-temperature thermoelectric properties of NaxCoO2δ single crystals. Jpn J Appl Phys 40:4644–4647. https://doi.org/10.1109/ICT.2001.979851

    Article  CAS  Google Scholar 

  336. Ohtaki M, Araki K, Yamamoto K (2009) High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater 38(7):1234–1238. https://doi.org/10.1007/s11664-009-0816-1

    Article  CAS  Google Scholar 

  337. Liang S, Li L (2018) Improved thermoelectric performance of CdO by adding SiC fibers versus by adding SiC nanoparticles inclusions. J Appl Phys. https://doi.org/10.1063/1.5012046

    Article  Google Scholar 

  338. Zhang D-B, Li H-Z, Zhang B-P, Liang D-d, Xia M (2017) Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity. RSC Adv 7(18):10855–10864. https://doi.org/10.1039/c6ra28854e

    Article  CAS  Google Scholar 

  339. Tsubota T, Ohtaki M, Eguchi K, Arai H (1997) Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J Mater Chem 7(1):85–90. https://doi.org/10.1039/a602506d

    Article  CAS  Google Scholar 

  340. Ohtaki M, Tsubota T, Eguchi K, Arai H (1996) High-temperature thermoelectric properties of (Zn1xAlx)O. J Appl Phys 79(3):1816–1818. https://doi.org/10.1063/1.360976

    Article  CAS  Google Scholar 

  341. Liang X, Shen L (2018) Optimizing interfacial transport properties of InO2 single atomic layers in In2O3(ZnO)(4) natural superlattices for enhanced high temperature thermoelectrics. Nanoscale 10(9):4500–4514. https://doi.org/10.1039/c7nr09585f

    Article  CAS  Google Scholar 

  342. Lee M, Viciu L, Li L, Wang Y, Foo ML, Watauchi S, Pascal RA Jr, Cava RJ, Ong NP (2006) Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nat Mater 5(7):537–540. https://doi.org/10.1038/nmat1669

    Article  CAS  Google Scholar 

  343. Zheng Y, Zhou H, Ma T, Zuo G, Li H, Su T, Wu C, Huang H, Wang D, Yin L (2014) High-temperature thermoelectric properties of AgxYyCa2.8Co4O9+delta ceramics. Bull Mater Sci 37(5):963–967. https://doi.org/10.1007/s12034-014-0032-3

    Article  CAS  Google Scholar 

  344. Zhan B, Liu Y, Lan J, Zeng C, Lin Y-H, Nan C-W (2015) Enhanced thermoelectric performance of Bi2O2Se with Ag addition. Materials 8(4):1568–1576. https://doi.org/10.3390/ma8041568

    Article  CAS  Google Scholar 

  345. Behera S, Kamble VB, Vitta S, Umarji AM, Shivakumara C (2017) Synthesis, structure and thermoelectric properties of La1xNaxCoO3 perovskite oxides. Bull Mater Sci 40(7):1291–1299. https://doi.org/10.1007/s12034-017-1498-6

    Article  CAS  Google Scholar 

  346. Hernandez JA, Carpena-Nunez J, Fonseca LF, Pettes MT, Yacaman MJ, Benitez A (2018) Thermoelectric properties and thermal tolerance of indium tin oxide nanowires. Nanotechnology. https://doi.org/10.1088/1361-6528/aaccd3

    Article  Google Scholar 

  347. Kim SW, Tarumi R, Iwasaki H, Ohta H, Hirano M, Hosono H (2009) Thermal conductivity and Seebeck coefficient of 12CaO center dot 7Al(2)O(3) electride with a cage structure. Phys Rev B. https://doi.org/10.1103/PhysRevB.80.075201

    Article  Google Scholar 

  348. Li SW, Funahashi R, Matsubara I, Ueno K, Yamada H (1999) High temperature thermoelectric properties of oxide Ca9Co12O28. J Mater Chem 9(8):1659–1660. https://doi.org/10.1039/a904413b

    Article  CAS  Google Scholar 

  349. Li T, Pickel AD, Yao Y, Chen Y, Zeng Y, Lacey SD, Li Y, Wang Y, Dai J, Wang Y, Yang B, Fuhrer MS, Marconnet A, Dames C, Drew DH, Hu L (2018) Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nat Energy 3(2):148–156. https://doi.org/10.1038/s41560-018-0086-3

    Article  CAS  Google Scholar 

  350. Brinzari VI, Cocemasov AI, Nika DL, Korotcenkov GS (2017) Ultra-low thermal conductivity of nanogranular indium tin oxide films deposited by spray pyrolysis. Appl Phys Lett. https://doi.org/10.1063/1.4976629

    Article  Google Scholar 

  351. Lai Y-C, Tsai H-J, Hung C-I, Fujishiro H, Naito T, Hsu W-K (2015) Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2. Phys Chem Chem Phys 17(12):8120–8124. https://doi.org/10.1039/c4cp05468g

    Article  CAS  Google Scholar 

  352. Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y (2019) Lattice strain advances thermoelectrics. Joule 3(5):1276–1288. https://doi.org/10.1016/j.joule.2019.02.008

    Article  CAS  Google Scholar 

  353. Kang CC, Yamauchi KA, Vlassakis J, Sinkala E, Duncombe TA, Herr AE (2016) Single cell-resolution western blotting. Nat Protoc 11(8):1508–1530. https://doi.org/10.1038/nprot.2016.089

    Article  Google Scholar 

  354. Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting IT, Faghaninia A, Chen Y, Jain A, Chen L, Snyder GJ, Pei Y (2018) Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2(5):976–987. https://doi.org/10.1016/j.joule.2018.02.016

    Article  CAS  Google Scholar 

  355. Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder GJ, Pei Y (2017) Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater. https://doi.org/10.1002/adma.201606768

    Article  Google Scholar 

  356. Xu X, Huang Y, Xie L, Wu D, Ge Z, He J (2020) Realizing improved thermoelectric performance in BiI3-doped Sb2Te3(GeTe)(17) via introducing dual vacancy defects. Chem Mater 32(4):1693–1701. https://doi.org/10.1021/acs.chemmater.0c00113

    Article  CAS  Google Scholar 

  357. Chen S, Bai H, Li J, Pan W, Jiang X, Li Z, Chen Z, Yan Y, Su X, Wu J, Uher C, Tang X (2020) Vacancy-based defects regulation for high thermoelectric performance in Ge9Sb2Te12x compounds. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c02155

    Article  Google Scholar 

  358. Gelbstein Y, Davidow J (2014) Highly efficient functional GexPb1xTe based thermoelectric alloys. Phys Chem Chem Phys 16(37):20120–20126. https://doi.org/10.1039/c4cp02399d

    Article  CAS  Google Scholar 

  359. Xie L, Chen Y, Liu R, Song E, Xing T, Deng T, Song Q, Liu J, Zheng R, Gao X, Bai S, Chen L (2020) Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104347

    Article  Google Scholar 

  360. Li J, Xie Y, Zhang C, Ma K, Liu F, Ao W, Li Y, Zhang C (2019) Stacking fault-induced minimized lattice thermal conductivity in the high-performance GeTe-based thermoelectric materials upon Bi2Te3 alloying. ACS Appl Mater Interfaces 11(22):20064–20072. https://doi.org/10.1021/acsami.9b04984

    Article  CAS  Google Scholar 

  361. Yue X, Zhu T, Zhao X (2015) Carrier concentration optimization and Mg alloying in PbTe_(0.8)Se_(0.2) thermoelectric materials (PbTe_(0.8)Se_(0.2) 基热电材料载流子浓度优化与Mg合金化). J Mater Sci Eng 33(5):625–629,634

  362. Jood P, Ohta M, Yamamoto A, Kanatzidis MG (2018) Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2(7):1339–1355. https://doi.org/10.1016/j.joule.2018.04.025

    Article  CAS  Google Scholar 

  363. Wu D, Zhao L-D, Hao S, Jiang Q, Zheng F, Doak JW, Wu H, Chi H, Gelbstein Y, Uher C, Wolverton C, Kanatzidis M, He J (2014) Origin of the High Performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J Am Chem Soc 136(32):11412–11419. https://doi.org/10.1021/ja504896a

    Article  CAS  Google Scholar 

  364. Xing T, Song Q, Qiu P, Zhang Q, Xia X, Liao J, Liu R, Huang H, Yang J, Bai S, Ren D, Shi X, Chen L (2019) Superior performance and high service stability for GeTe-based thermoelectric compounds. Natl Sci Rev 6(5):944–954. https://doi.org/10.1093/nsr/nwz052

    Article  CAS  Google Scholar 

  365. Hu X, Jood P, Ohta M, Kunii M, Nagase K, Nishiate H, Kanatzidis MG, Yamamoto A (2016) Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ Sci 9(2):517–529. https://doi.org/10.1039/c5ee02979a

    Article  CAS  Google Scholar 

  366. Nshimyimana E, Hao S, Su X, Zhang C, Liu W, Yan Y, Uher C, Wolverton C, Kanatzidis MG, Tang X (2020) Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. J Mater Chem A 8(3):1193–1204. https://doi.org/10.1039/c9ta10436d

    Article  CAS  Google Scholar 

  367. Caylor JC, Coonley K, Stuart J, Colpitts T, Venkatasubramanian R (2005) Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl Phys Lett. https://doi.org/10.1063/1.1992662

    Article  Google Scholar 

  368. Beyer H, Nurnus J, Bottner H, Lambrecht A, Wagner E, Bauer G (2002) High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity. Phys E Low-Dimens Syst Nanostruct 13(2–4):965–968. https://doi.org/10.1016/s1386-9477(02)00246-1

    Article  CAS  Google Scholar 

  369. Beyer H, Nurnus J, Bottner H, Lambrecht A, Roch T, Bauer G (2002) PbTe based superlattice structures with high thermoelectric efficiency. Appl Phys Lett 80(7):1216–1218. https://doi.org/10.1063/1.1448388

    Article  CAS  Google Scholar 

  370. Cai B, Li J, Sun H, Zhang L, Xu B, Hu W, Yu D, He J, Zhao Z, Liu Z, Tian Y (2018) Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure. Sci China Mater 61(9):1218–1224. https://doi.org/10.1007/s40843-018-9264-1

    Article  CAS  Google Scholar 

  371. Yue L, Fang T, Zheng S, Cui W, Wu Y, Chang S, Wang L, Bai P, Zhao H (2019) Cu/Sb codoping for tuning carrier concentration and thermoelectric performance of GeTe-based alloys with ultralow lattice thermal conductivity. ACS Appl Energy Mater 2(4):2596–2603. https://doi.org/10.1021/acsaem.8b02213

    Article  CAS  Google Scholar 

  372. Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis MG, Tang X (2018) Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J Am Chem Soc 140(7):2673–2686. https://doi.org/10.1021/jacs.7b13611

    Article  CAS  Google Scholar 

  373. Li JQ, Lu ZW, Wu HJ, Li HT, Liu FS, Ao WQ, Luo J, He JQ (2014) High thermoelectric performance of Ge1xPbxSe0.5Te0.5 due to (Pb, Se) co-doping. Acta Mater 74:215–223. https://doi.org/10.1016/j.actamat.2014.04.036

    Article  CAS  Google Scholar 

  374. Nshimyimana E, Su X, Xie H, Liu W, Deng R, Luo T, Yan Y, Tang X (2018) Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe. Sci Bull 63(11):717–725. https://doi.org/10.1016/j.scib.2018.04.012

    Article  CAS  Google Scholar 

  375. Yan Y, Zhang L, Ren B (2016) Study on hot-pressing technology of GeTe-based thermoelectric material (GeTe基温差电材料热压工艺研究). Chin J Power Sources 40(8):1640–1642

    Google Scholar 

  376. Li Z-Y, Li J-F, Zhao W-Y, Tan Q, Wei T-R, Wu C-F, Xing Z-B (2014) PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Appl Phys Lett. https://doi.org/10.1063/1.4869220

    Article  Google Scholar 

  377. Li JQ, Lu ZW, Li SM, Liu FS, Ao WQ, Li Y (2016) High thermoelectric properties of PbTe-Sm2Se3 composites. Scr Mater 112:144–147. https://doi.org/10.1016/j.scriptamat.2015.09.036

    Article  CAS  Google Scholar 

  378. Liu Z, Sun J, Mao J, Zhu H, Ren W, Zhou J, Wang Z, Singh DJ, Sui J, Chu C-W, Ren Z (2018) Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc Natl Acad Sci USA 115(21):5332–5337. https://doi.org/10.1073/pnas.1802020115

    Article  CAS  Google Scholar 

  379. Luo Z-Z, Cai S, Hao S, Bailey TP, Su X, Spanopoulos I, Hadar I, Tan G, Luo Y, Xu J, Uher C, Wolverton C, Dravid VP, Yan Q, Kanatzidist MG (2019) High figure of merit in gallium-doped nanostructured n-type PbTe-xGeTe with midgap states. J Am Chem Soc 141(40):16169–16177. https://doi.org/10.1021/jacs.9b09249

    Article  CAS  Google Scholar 

  380. Wang D, Qin Y, Wang S, Qiu Y, Ren D, Xiao Y, Zhao L-D (2019) Synergistically enhancing thermoelectric performance of n-type PbTe with indium doping and sulfur alloying. Ann Phys. https://doi.org/10.1002/andp.201900421

    Article  Google Scholar 

  381. Wang X, Veremchuk I, Bobnar M, Burkhardt U, Zhao J-T, Grin Y (2018) Sodium substitution in lead telluride. Chem Mater 30(4):1362–1372. https://doi.org/10.1021/acs.chemmater.7b05091

    Article  CAS  Google Scholar 

  382. Li JQ, Deng JF, Li SK, Li Y, Liu FS, Ao WQ (2015) Phases and thermoelectric properties of Ge1x(Pb0.9Yb0.1)(x)Te alloys. Intermetallics 56:63–67. https://doi.org/10.1016/j.intermet.2014.09.004

    Article  CAS  Google Scholar 

  383. Deng JF, Li JQ, Ye RF, Liu XY, Liu FS, Ao WQ (2014) Enhanced thermoelectric properties of (Pb1xYbxTe)(0.15)(GeTe)(0.85) composites due to phase separation and Yb doping. J Alloys Compd 585:173–177. https://doi.org/10.1016/j.jallcom.2013.09.104

    Article  CAS  Google Scholar 

  384. Gao A, Lu N, Dai P, Li T, Pei H, Gao X, Gong Y, Wang Y, Fan C (2011) Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11(9):3974–3978. https://doi.org/10.1021/nl202303y

    Article  CAS  Google Scholar 

  385. Yang L, Chen Z-G, Hong M, Wang L, Kong D, Huang L, Han G, Zou Y, Dargusch M, Zou J (2017) n-type Bi-doped PbTe nanocubes with enhanced thermoelectric performance. Nano Energy 31:105–112. https://doi.org/10.1016/j.nanoen.2016.11.027

    Article  CAS  Google Scholar 

  386. Wang S, Yang Z, Sun Y, Xiao Y, Zhao L-D (2020) Synergistically optimizing charge and phonon transport properties in n-type PbTe via introducing ternary compound AgSb(Se, Te)(2). J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152463

    Article  Google Scholar 

  387. Lu ZW, Li JQ, Wang CY, Li Y, Liu FS, Ao WQ (2015) Effects of Mn substitution on the phases and thermoelectric properties of Ge0.8Pb0.2Te alloy. J Alloys Compd 621:345–350. https://doi.org/10.1016/j.jallcom.2014.09.198

    Article  CAS  Google Scholar 

  388. Srinivasan B, Berthebaud D, Mori T (2020) Is LiI a potential dopant candidate to enhance the thermoelectric performance in Sb-free GeTe systems? A prelusive study. Energies. https://doi.org/10.3390/en13030643

    Article  Google Scholar 

  389. Tan H, Zhang B, Wang G, Chen Y, Shen X, Guo L, Han X, Lu X, Zhou X (2019) Rapid preparation of Ge0.9Sb0.1Te1+x via unique melt spinning: hierarchical microstructure and improved thermoelectric performance. J Alloys Compd 774:129–136. https://doi.org/10.1016/j.jallcom.2018.09.144

    Article  CAS  Google Scholar 

  390. Yang L, Li JQ, Chen R, Li Y, Liu FS, Ao WQ (2016) Influence of Se substitution in GeTe on phase and thermoelectric properties. J Electron Mater 45(11):5533–5539. https://doi.org/10.1007/s11664-016-4770-4

    Article  CAS  Google Scholar 

  391. Gui YQ, Zheng YS, Liu FS, Zhang SL, Ao WQ, Li Y, Li JQ (2016) Effect of Na and Ba co-doping on the structure and thermoelectric performance of PbTe0.5Se0.5. Scr Mater 120:9–13. https://doi.org/10.1016/j.scriptamat.2016.04.009

    Article  CAS  Google Scholar 

  392. Wang L, Li J, Zhang C, Ding T, Xie Y, Li Y, Liu F, Ao W, Zhang C (2020) Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi2Te3. J Mater Chem A 8(4):1660–1667. https://doi.org/10.1039/c9ta11901a

    Article  CAS  Google Scholar 

  393. Qiu X, Zheng Q, Lu X, Fan S, Zhou X, Wang L, Jiang W (2020) Effect of Bi doping on thermoelectric properties of Ge0.90xPb0.10BixTe compounds. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2020.104955

    Article  Google Scholar 

  394. Zhou C, Shi Z, Ge B, Wang K, Zhang D, Liu G, Qiao G (2017) Scalable solution-based synthesis of component-controllable ultrathin PbTe1xSex nanowires with high n-type thermoelectric performance. J Mater Chem A 5(6):2876–2884. https://doi.org/10.1039/c6ta09189j

    Article  CAS  Google Scholar 

  395. Yu B (2012) The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Phys Sin. https://doi.org/10.7498/aps.61.217104

    Article  Google Scholar 

  396. Zhang C, Wang C, Xie Y, Chen B, Zhang C (2018) Se–Sm co-doping strategy for tuning the structural and thermoelectric properties of GeTe-PbTe based alloys. Mater Des 157:394–401. https://doi.org/10.1016/j.matdes.2018.08.001

    Article  CAS  Google Scholar 

  397. Nandihalli N, Pai Y-H, Liu C-J (2020) Fabrication and thermoelectric properties of Pb1y(Zn0.85Al0.15)(y)Te–Te (y=0, 0.04, 0.06, 0.08, and 0.11) nanocomposites. Ceram Int 46(5):6443–6453. https://doi.org/10.1016/j.ceramint.2019.11.124

    Article  CAS  Google Scholar 

  398. Chen Y, Zhu TJ, Yang SH, Yu C, Zhao XB (2010) Thermal and electrical transport properties of VA-element doped Pb9.6M0.2Te10xSex (M = Sb, Bi) thermoelectric materials. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/43/3/035405

    Article  Google Scholar 

  399. Guo H, Xin H, Qin X, Jian Z, Li D, Li Y, Li C (2016) Thermoelectric transport properties of PbTe-based composites incorporated with Cu2Se nano-inclusions. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/49/6/065302

    Article  Google Scholar 

  400. Yusufu A, Kurosaki K, Sugahara T, Ohishi Y, Muta H, Yamanaka S (2012) Thermoelectric properties and microstructures of AgSbTe2-added p-type Pb0.16Ge0.84Te. Physica Status Solidi A Appl Mater Sci 209(1):167–170. https://doi.org/10.1002/pssa.201127194

    Article  CAS  Google Scholar 

  401. Sun H, Cai B, Zhao P, Yu F, Zhang L, Yu D, Tian Y, Xu B (2019) Enhancement of thermoelectric performance of Al doped PbTe–PbSe due to carrier concentration optimization and alloying. J Alloys Compd 791:786–791. https://doi.org/10.1016/j.jallcom.2019.04.001

    Article  CAS  Google Scholar 

  402. Srinivasan B, Gucci F, Boussard-Pledel C, Chevire F, Reece MJ, Tricot S, Calvez L, Bureau B (2017) Enhancement in thermoelectric performance of n-type Pb-deficit Pb–Sb–Te alloys. J Alloys Compd 729:198–202. https://doi.org/10.1016/j.jallcom.2017.09.135

    Article  CAS  Google Scholar 

  403. Dong Y, Li H, Xu G (2019) Thermoelectric performance of (GeTe)(1–x)(Sb2Te3)(x) fabricated by high pressure sintering method. Mater Res Express. https://doi.org/10.1088/2053-1591/ab6c1f

    Article  Google Scholar 

  404. Su T, Jia X, Ma H, Guo J, Jiang Y, Dong N, Deng L, Zhao X, Zhu T, Wei C (2009) Thermoelectric properties of nonstoichiometric PbTe prepared by HPHT. J Alloys Compd 468(1–2):410–413. https://doi.org/10.1016/j.jallcom.2008.01.012

    Article  CAS  Google Scholar 

  405. Li Y, Mei D, Wang H, Yao Z, Zhu T, Chen S (2015) Reduced lattice thermal conductivity in nanograined Na-doped PbTe alloys by ball milling and semisolid powder processing. Mater Lett 140:103–106. https://doi.org/10.1016/j.matlet.2014.11.015

    Article  CAS  Google Scholar 

  406. Yu J-K, Mitrovic S, Tham D, Varghese J, Heath JR (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5(10):718–721. https://doi.org/10.1038/nnano.2010.149

    Article  CAS  Google Scholar 

  407. Duran Retamal JR, Kang CF, Lien DH, Kuo WC, Juang ZY, Tsai ML, Ho CH, Juang JY, Hsiao VKS, Chu YH, Li LJ, Wu Y, He JH (2018) A nanostructuring method to decouple electrical and thermal transport through the formation of electrically triggered conductive nanofilaments. Adv Mater 30(28):e1705385. https://doi.org/10.1002/adma.201705385

    Article  CAS  Google Scholar 

  408. Wei P-C, Liao C-N, Wu H-J, Yang D, He J, Biesold-McGee GV, Liang S, Yen W-T, Tang X, Yeh J-W, Lin Z, He J-H (2020) Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Adv Mater 32(12):1906457. https://doi.org/10.1002/adma.201906457

    Article  CAS  Google Scholar 

  409. Al-Amri AM, Cheng B, He J-H (2019) Perovskite methylammonium lead trihalide heterostructures: progress and challenges. IEEE Trans Nanotechnol 18:1–12. https://doi.org/10.1109/tnano.2018.2872887

    Article  CAS  Google Scholar 

  410. Yang W, Chen J, Zhang Y, Zhang Y, He JH, Fang X (2019) Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology. Adv Funct Mater 29(18):1808182. https://doi.org/10.1002/adfm.201808182

    Article  CAS  Google Scholar 

  411. Gao N, Fang X (2015) Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem Rev 115(16):8294–8343. https://doi.org/10.1021/cr400607y

    Article  CAS  Google Scholar 

  412. Fang XS, Bando Y, Shen GZ, Ye CH, Gautam UK, Costa PMFJ, Zhi CY, Tang CC, Golberg D (2007) Ultrafine ZnS nanobelts as field emitters. Adv Mater 19(18):2593–2596. https://doi.org/10.1002/adma.200700078

    Article  CAS  Google Scholar 

  413. Lee JM, Choung JW, Yi J, Lee DH, Samal M, Yi DK, Lee CH, Yi GC, Paik U, Rogers JA, Park WI (2010) Vertical pillar-superlattice array and graphene hybrid light emitting diodes. Nano Lett 10(8):2783–2788. https://doi.org/10.1021/nl100648y

    Article  CAS  Google Scholar 

  414. Liao L, Bai J, Cheng R, Lin Y-C, Jiang S, Qu Y, Huang Y, Duan X (2010) Sub-100 nm channel length graphene transistors. Nano Lett 10(10):3952–3956. https://doi.org/10.1021/nl101724k

    Article  CAS  Google Scholar 

  415. Le V-Q, Do T-H, Retamal JRD, Shao P-W, Lai Y-H, Wu W-W, He J-H, Chueh Y-L, Chu Y-H (2019) Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy 56:322–329. https://doi.org/10.1016/j.nanoen.2018.10.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the support from the National Key R&D Program of China (Nos. 2019YFB1503603, 2018YFF01012705, and 2018YFF01010504), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61474115 and 61504138), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Nos. GJJSTD20200006 and GJJSTD20180004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Yang, L., Ma, Z. et al. Review of current high-ZT thermoelectric materials. J Mater Sci 55, 12642–12704 (2020). https://doi.org/10.1007/s10853-020-04949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04949-0

Navigation