Skip to main content
Log in

Coral performance and bioerosion in Central Mexican Pacific reef communities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Reef development occurs commonly under oligotrophic conditions that favor corals over competitors. In the Eastern Tropical Pacific (ETP), coral communities develop under highly dynamic environmental conditions that may benefit organisms involved in reef bioerosion. To understand how coral performance and maintenance change with increasing urban pressure in the ETP, we evaluated coral reproductive activity, calcification, and bioerosion in two representative coral genera in three Central Mexican Pacific sites. We hypothesize that stressors associated to urban development will negatively affect coral performance while enhancing bioerosion. Despite moderate to high levels of nitrite, nitrate, and phosphate and highly variable sedimentation rates, coral performance was not hampered in any site. Coral growth in Pocillopora and Pavona corals exhibited typical growth rates (~ 6.6 gCaCO3 cm−2 year−1 and ~ 1.1 gCaCO3 cm−2 year−1, respectively) and colonies were reproductively active from March to November. However, 76.5% of all coral colonies were invaded by excavating sponges. In Pavona colonies, ~ 24.37% of total CaCO3 volume was removed by bioeroders. While coral performance is not hampered by the current nutrient levels and sedimentation regimes, these conditions may increase the abundance of bioeroders such as sponges, leading to higher bioerosion rates that compromise reef integrity and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  • Abramoff, M. D., P. J. Magalhaes & S. J. Ram, 2004. Image processing with ImageJ. Biophotonics Int 11: 36–42.

    Google Scholar 

  • Allemand, D., E. Tambutté, D. Zoccola & S. Tambutté, 2011. Coral calcification, cells to reefs. In Dubinsky, Z. & N. Stambler (eds), Coral reefs: an ecosystem in transition Springer, New York: 119–150.

    Chapter  Google Scholar 

  • Andersson, A. J. & D. Gledhill, 2013. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine Science 5: 321–348.

    Article  PubMed  Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods, PRIMER-E Press, Plymouth:

    Google Scholar 

  • Anthony, K. R., P. A. Marshall, A. Abdulla, R. Beeden, C. Bergh, R. Black, C. M. Eakin, E. T. Game, M. Gooch, N. A. Graham, A. Green, S. F. Heron, R. vanHooidonk, C. Knowland, S. Mangubhai, N. Marshall, J. A. Maynard, P. McGinnity, E. McLeod, P. J. Mumby, M. Nyström, D. Obura, J. Oliver, H. P. Possingham, R. L. Pressey, G. P. Rowlands, J. Tamelander, D. Wachenfeld & S. Wear, 2015. Operationalizing resilience for adaptive coral reef management under global environmental change. Global Change Biology 21: 48–61.

    Article  PubMed  Google Scholar 

  • Barnes, D. J., 1970. Coral skeletons: an explanation of their growth and structure. Science 170: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  • Bartley, R., Z. T. Bainbridge, S. E. Lewis, F. J. Kroon, S. N. Wilkinson, J. E. Brodie & D. M. Silburn, 2014. Relating sediment impacts on coral reefs to watershed sources, processes and management: a review. Science of the Total Environment 463–469: 1138–1153.

    Article  CAS  Google Scholar 

  • Becker, D. M. & N. J. Silbiger, 2020. Nutrient and sediment loading affect multiple facets of functionality in a tropical branching coral. Journal of Experimental Biology 223: jeb225045.

    Article  Google Scholar 

  • Bell, P. R. F., 1992. Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Research 26: 553–568.

    Article  CAS  Google Scholar 

  • Bellantuono, A. J., O. Hoegh-Guldberg & M. Rodriguez-Lanetty, 2012. Resistance to thermal stress in corals without changes in symbiont composition. Proceedings of the Royal Society B: Biological Sciences 279: 1100–1107.

    Article  CAS  PubMed  Google Scholar 

  • Blott, S. J. & K. Pye, 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26: 1237–1248.

    Article  Google Scholar 

  • Bucher, D. J., V. J. Harriott & L. G. Roberts, 1998. Microdensity, bulk density and porosity of acroporid corals. Journal of Experimental Marine Biology and Ecology 228: 117–135.

    Article  Google Scholar 

  • Burke, L., K. Reytar, M. Spalding & A. Perry, 2011. Reefs at risk revisited, World Resources Institute, Washington DC:

    Google Scholar 

  • Cabral-Tena, R. A., H. Reyes-Bonilla, S. Lluch-Cota, D. A. Paz-García, L. E. Calderón-Aguilera, O. Norzagaray-López & E. F. Balart, 2013. Different calcification rates in males and females of the coral Porites panamensis in the Gulf of California. Marine Ecology Progress Series 476: 1–8.

    Article  Google Scholar 

  • Carballo, J. L., J. A. Cruz-Barraza & P. Gómez, 2004. Taxonomy and description of Clionaid sponges (Hadromerida Clionaidae) from the Pacific Ocean of Mexico. Zoological Journal of the Linnean Society 141: 353–397.

    Article  Google Scholar 

  • Carballo, J. L., E. Bautista-Guerrero & G. E. Leyte-Morales, 2008. Boring sponges and the modelling of coral reefs in the east Pacific Ocean. Marine Ecology Progress Series 356: 113–122.

    Article  Google Scholar 

  • Carballo, J. L., J. A. Cruz-Barraza, E. Bautista-Guerrero, H. Nava & J. A. Chávez, 2011. Efecto de la bioerosión por esponjas en arrecifes afectados por el cambio climático. In Hernández-Zanuy, C. & P. M. Alcolado (eds), La biodiversidad en ecosistemas marinos y costeros del litoral de Iberoamérica y el cambio climático: II. Memorias del Simposio. Instituto de Oceanología La Habana, Julio.

    Google Scholar 

  • Carballo, J. L., E. Bautista, H. Nava, J. A. Cruz-Barraza & J. A. Chávez, 2013. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecology and Evolution 3(4): 872–886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iberoamericano de biodiversidad marina y cambio climático, de la RED CYTED BIODIVMAR, Brasil, 40–53pp.

  • Carpizo-Ituarte, E., V. Vizcaíno-Ochoa, G. Chi-Barragán, O. Tapia-Vázquez, A. L. Cupul-Magaña & P. Medina-Rosas, 2011. Evidence of sexual reproduction in the hermatypic corals Pocillopora damicornis, Porites panamensis, and Pavona gigantea in Banderas Bay, Mexican Pacific. Ciencias Marinas 37: 97–112.

    Google Scholar 

  • Carricart-Ganivet, J. P. & D. J. Barnes, 2007. Densitometry from digitized images of Xradiographs: methodology for measurement of coral skeletal density. Journal of Experimental Marine Biology and Ecology 344: 67–72.

    Article  Google Scholar 

  • Chaves-Fonnegra, A., S. Zea & M. L. Gómez, 2007. Abundance of the excavating sponge Cliona delitrix in relation to sewage discharge at San Andrés Island, SW Caribbean, Colombia. Boletín De Investigaciones Marinas y Costeras 36: 63–78.

    Google Scholar 

  • Chazottes, V., T. L. E. Campion-Alusmard, M. Peyrot-Clausade & P. Cuet, 2002. The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21: 375–390.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. Primer6: User Manual/Tutorial, Primer-E, Plymouth:

    Google Scholar 

  • Cortés, J. & H. Reyes-Bonilla, 2017. Human influences on Eastern Tropical Pacific coral communities and coral reefs. In Glynn, P. W., D. P. Manzello & I. C. Enochs (eds), Coral reefs of the Eastern Tropical Pacific: persistence and loss in a dynamic environment Springer, New York: 549–563.

    Chapter  Google Scholar 

  • Cosain-Díaz, J. A., J. J. A. Tortolero-Langarica, A. P. Rodríguez-Troncoso, E. Bautista-Guerrero, D. M. Antuna-Roman, P. Salazar-Silva & A. L. Cupul-Magaña, 2021. Internal bioerosion in massive corals associated to reef communities of the Central Mexican Pacific: the effects of intrinsic and extrinsic factors. Ciencias Marinas 47(1): 33–47.

    CAS  Google Scholar 

  • Cupul-Magaña, A. L. & A. P. Rodríguez-Troncoso, 2017. Tourist carrying capacity at Islas Marietas National Park: an essential tool to protect the coral community. Applied Geography 88: 15–23.

    Article  Google Scholar 

  • Cupul-Magaña, A. L., O. S. Aranda-Mena, P. Medina-Rosas & V. Vizcaíno-Ochoa, 2000. Comunidades coralinas de las Islas Marietas, Bahía de Banderas, Jalisco-Nayarit, México. Mexicoa 2(1): 15–22.

    Google Scholar 

  • D’Angelo, C. & J. Wiedenmann, 2014. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Current Opinion in Environmental Sustainability 7: 82–93.

    Article  Google Scholar 

  • Dunn, J. G., P. W. Sammarco, & G. LaFleur, 2012. Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricate: a controlled experimental approach. Journal of Experimental Marine Biology and Ecology 411: 34–44.

    Article  CAS  Google Scholar 

  • Duprey, N., H. Boucher & C. Jiménez, 2012. Digital correction of computed X-radiographs for coral densitometry. Journal of Experimental Marine Biology and Ecology 438: 84–92.

    Article  Google Scholar 

  • Eakin, C. M., H. P. Sweatman & R. E. Brainard, 2019. The 2014–2017 global scale coral bleaching event: insights and impacts. Coral Reefs 38: 539–545.

    Article  Google Scholar 

  • Erftemeijer, P. L. A., B. Riegl, B. W. Hoeksema & P. A. Todd, 2012. Environmental impacts of dredging and other sediment disturbances on corals: a review. Marine Pollution Bulletin 64: 1737–1765.

    Article  CAS  PubMed  Google Scholar 

  • Eyre, B. D., A. J. Andersson & T. Cyronak, 2014. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change 4: 968–975.

    Article  CAS  Google Scholar 

  • Fabricius, K. E., 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin 50: 125–146.

    Article  CAS  PubMed  Google Scholar 

  • Fabricius, K. E., 2011. Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In Dubinsky, Z. & N. Stambler (eds), Coral reefs: an ecosystem in transition Springer, Berlin: 493–505.

    Chapter  Google Scholar 

  • Gil, M. A., 2013. Unity through nonlinearity: a unimodal coral-nutrient interaction. Ecology 94(8): 1871–1877.

    Article  PubMed  Google Scholar 

  • Glynn, P. W., 2017. History of Eastern Pacific coral reef research. In Glynn, P. W., D. P. Manzello & I. C. Enochs (eds), Coral reefs of the Eastern Tropical Pacific: persistence and loss in a dynamic environment Springer, Berlin: 1–37.

    Chapter  Google Scholar 

  • Glynn, P. W. & D. P. Manzello, 2015. Bioerosion and coral reef growth: a dynamic balance. In Birkeland, C. (ed), Coral reefs in the anthropocene Springer, Berlin: 67–97.

    Chapter  Google Scholar 

  • Glynn, P. W., N. J. Gassman, C. M. Eakin, J. Cortes, D. B. Smith & H. M. Guzman, 1991. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galápagos Islands (Ecuador). I. Pocilloporidae. Marine Biology 109: 355–368.

    Article  Google Scholar 

  • Glynn, P. W., S. B. Colley, N. J. Gassman, K. Black, J. Cortés & J. L. Maté, 1996. Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and Galápagos Islands (Ecuador). III. Agariciidae (Pavona gigantea and Gardineroseris planulata). Marine Biology 125: 579–601.

    Article  Google Scholar 

  • Glynn, P. W., S. B. Colley, E. Carpizo-Ituarte & R. Richmond, 2017. Coral reproduction in the Eastern Pacific. In Glynn, P. W., D. P. Manzello & I. C. Enochs (eds), Coral reefs of the Eastern Tropical Pacific Persistence and loss in a dynamic environment, Vol. 8. Springer, Berlin: 436–476.

    Chapter  Google Scholar 

  • Granja-Fernández, M. R. & R. A. López-Pérez, 2008. Sedimentación en comunidades arrecifales de Bahías de Huatulco, Oaxaca, México. Revista De Biología Tropical 56: 1179–1187.

    PubMed  Google Scholar 

  • González-Luna, C., A. Filonov, O. Mireles & I. Tereshchenko, 2019. Análisis espectral y dispersión superficial de detritos suspendidos en la Bahía de Banderas mediante imágenes de satélite. Revista Cartográfica 98: 223–237.

    Article  Google Scholar 

  • Harrison, P. L., 2011. Sexual reproduction of scleractinian corals. In Dubinsky, Z. & N. Stambler (eds), Coral Reefs: an ecosystem in transition Springer, Netherlands: 59–85.

    Chapter  Google Scholar 

  • Harrison, P. L. & C. C. Wallace, 1990. Reproduction, dispersal and recruitment of scleractinian corals. In Dubinsky, Z. (ed), Ecosystems of the world: coral reefs Elsevier, Amsterdam: 133–207.

    Google Scholar 

  • Hernández-Ballesteros, L. M., E. M. Elizalde-Rendón, J. L. Carball & J. P. Carricart-Ganivet, 2013. Sponge bioerosion on reef-building corals: Dependent on the environment or on skeletal density? Journal of Experimental Marine Biology and Ecology 441: 23–27.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi & M. E. Hatziolos, 2007. Coral reefs under rapid climate change and ocean acidification. Science 318(5857): 1737–1742.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, K. E., E. N. Edinger, G. V. Limmon & M. J. Risk, 2000. Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Marine Pollution Bulletin 40: 606–617.

    Article  CAS  Google Scholar 

  • Hughes, T. P., K. D. Anderson, S. R. Connolly, S. F. Heron, J. T. Kerry, J. M. Lough, A. H. Baird, J. K. Baum, M. L. Berumen, T. C. Bridge, D. C. Claar, M. Eakin, J. P. Gilmour, N. A. J. Graham, H. Harrison, J. P. A. Hobbs, A. S. Hoey, M. Hoogenboom, R. J. Lowe, M. T. McCulloch, J. M. Pandolfi, M. Pratchett, V. Schoepf, G. Torda & S. K. Wilson, 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359: 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Humanes, A., G. F. Ricardo, B. L. Willis, K. E. Fabricius & A. P. Negri, 2017. Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Scientific Reports 7: 44101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Humason, G. L., 1979. Animal tissue techniques, W.H. Freeman and Company, New York:

    Google Scholar 

  • Humphrey, C., M. Weber, C. Lott, T. Cooper & K. Fabricius, 2008. Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilization and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs 27: 837–850.

    Article  Google Scholar 

  • Hutchings, P., 2011. Bioerosion. In Hopley, D. (ed), Encyclopedia of modern coral reefs: structure, forms, and processes Springer, Verlag: 139–156.

    Chapter  Google Scholar 

  • INEGI., 2010. Instituto Nacional de Estadística y Geografía- Síntesis de Información Geográfica Nayarit. https://www.inegi.org.mx/contenidos/app/areasgeograficas/resumen/resumen_18.pdf. Accesed 1 March 2021.

  • Karydis, M., 2009. Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST Journal 11: 373–390.

    Google Scholar 

  • Kleypas, J. A., 1996. Coral reef development under naturally turbid conditions: fringing reefs near Broad Sound, Australia. Coral Reefs 15: 153–167.

    Article  Google Scholar 

  • Kleypas, J. A., J. W. McManus & L. A. Menez, 1999. Environmental limits to coral reef development: where do we draw the line? American Zoologist 39(1): 146–159.

    Article  Google Scholar 

  • Kopp, K., D. Booth, A. Broadbent, J. Brodie, D. Bucher, D. Capone, J. Coll, W. Dennison, M. Erdmann, P. Harrison, O. Hoegh-Guldberg, P. Hutchings, G. B. Jones, A. W. D. Larkum, J. O’Neil, A. Steven, E. Tentori, S. Ward, J. Williamson & D. Yellowlees, 2001. ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Marine Pollution Bulletin 42: 91–120.

    Article  Google Scholar 

  • Lam, E. K. Y., A. P. Y. Chui, C. K. Kwok, A. H. P. Ip, S. W. Chan, H. N. Leung, L. C. Yeung & P. O. Ang Jr, 2015. High levels of inorganic nutrients affect fertilization kinetics, early development and settlement of the scleractinian coral Platygyra acuta. Coral Reefs 34: 837–848.

    Article  Google Scholar 

  • Lamberts, A. E., 1978. Coral growth: Alizarin method. In Stoddart, D. R. & R. E. Johannes (eds), Coral Reefs: research methods UNESCO, Paris: 523–527.

    Google Scholar 

  • Leuzinger, S., K. R. N. Anthony, & B. L. Willis, 2013. Reproductive energy investment in corals: scaling with module size. Oecologia 136: 524–531. https://doi.org/10.1007/s00442-003-1305-5.

  • Lough, J. M. & D. J. Barnes, 1997. Coral records of past climates and environments. Bulletin of the Australian Meteorological and Oceanographic Society 10: 84–90.

    Google Scholar 

  • Lough, J. M. & D. J. Barnes, 2000. Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology 245: 225–243.

    Article  CAS  PubMed  Google Scholar 

  • Lough, J. M. & T. F. Cooper, 2011. New insights from coral growth band studies in an era of rapid environmental change. Earth-Science Reviews 108: 170–184.

    Article  CAS  Google Scholar 

  • Manzello, D. P., 2010. Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29: 749–758.

    Article  Google Scholar 

  • Martínez-Castillo, V., A. P. Rodríguez-Troncoso, J. D. Santiago-Valentín & A. L. Cupul-Magaña, 2020. The influence of urban pressures on coral physiology on marginal coral reefs of the Mexican Pacific. Coral Reefs. 39: 625–637.

    Article  Google Scholar 

  • Medellín-Maldonado, F., R. A. Cabral-Tena, R. A. López-Pérez, L. E. Calderón-Aguilera, C. O. Norzagaray-López, C. Chapa-Balcorta & R. C. Zepeta-Vilchis, 2016. Calcification of the main reef-building coral species on the Pacific coast of southern Mexico. Ciencias Marinas 42(23): 209–225.

    Article  CAS  Google Scholar 

  • Merchand-Rojas, M. A., 2012. The inter-state development of Puerto Vallarta and Bahía de Banderas: México. Problemas Del Desarrollo 43(168): 147–173.

    Google Scholar 

  • Morgan, K. M., C. T. Perry, J. A. Johnson & S. G. Smithers, 2017. Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Frontiers in Marine Science 4: 224.

    Article  Google Scholar 

  • Muthukrishnn, R. & P. Fong, 2014. Multiple anthropogenic stressors exert complex, interactive effects on coral reef community. Coral Reefs 28(11): 651–658.

    Google Scholar 

  • Nava, H. & J. L. Carballo, 2008. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. Journal of Experimental Biology 211: 2827–2831.

    Article  Google Scholar 

  • Nava, H. & M. T. Ramírez-Herrera, 2012. Land use and impact on coral communities along the central Pacific coast of Mexico. Environmental Earth Sciences 65(2012): 1095–1104.

    Article  Google Scholar 

  • Nava, H., M. Ramírez-Herrera, A. G. Figueroa-Camacho & B. M. Villegas-Sanchez, 2014. Habitat characteristics and environmental factors related to boring sponges assemblages on coral reefs near populated coastal areas on the Mexican Eastern Pacific coast. Marine Biology 44: 45–54.

    Google Scholar 

  • Padilla-Gamiño, J. L., L. Hédouin, R. G. Waller, D. Smith, W. Truong & R. D. Gates, 2014. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. The Biological Bulletin 226: 8–18.

    Article  PubMed  Google Scholar 

  • Pantoja, D. A., S. G. Marinone, A. Parés-Sierra & F. Gómez-Valdivia, 2012. Numerical modeling of seasonal and mesoscale hydrography and circulation in the Mexican Central Pacific. Ciencias Marinas 38: 363–379.

    Article  Google Scholar 

  • Perry, C. T. & L. Alvarez-Filip, 2018. Changing geo-ecological functions of coral reefs in the Anthropocene. Functional Ecology. https://doi.org/10.1111/1365-2435.13247,1-13.

    Article  Google Scholar 

  • Plata, L. & A. Filonov, 2007. Marea interna en la parte noroeste de la Bahía de Banderas, México. Ciencias Marinas 33: 197–215.

    Google Scholar 

  • Plata, L., A. Filonov, I. Tereshchenko, L. Nelly, C. Monzón, D. Avalos & C. Vargas, 2006. Geostrophic currents in the presence of an internal waves field in Bahía de Banderas, México. e-Gnosis 4: 1–43.

    Google Scholar 

  • Portela, W., E. Beier, E. D. Barton, R. Castro, V. Godínez, E. Palacios-Hernández, P. C. Fiedler, L. Sánchez-Velazco & A. Trasviña, 2016. Water masses and circulation in the Tropical Pacific off Central Mexico and surrounding areas. Journal of Physical Oceanography 46: 3069–3081.

    Article  Google Scholar 

  • Prophet, E. B., B. Mills, J. B. Arrington & L. H. Sobin, 1994. Laboratory methods in histotechnology: Hematoxylin and Eosin, American Registry of Pathology and Armed Forces Institute of Pathology, New York:

    Google Scholar 

  • Prouty, N. G., A. Cohen, K. K. Yates, C. D. Storlazzi, P. W. Swarzenski & D. White, 2017. Vulnerability of coral reefs to bioerosion from land-based sources of pollution. Journal of Geophysical Research: Oceans 122: 9319–9331.

    Article  CAS  Google Scholar 

  • Reyes-Bonilla, H. & L. E. Calderon-Aguilera, 2019. Growth and mortality rates of the reef coral Pavona gigantea in Cabo Pulmo reef, Gulf of California. Bulletin of Marine Science 95: 105–112.

    Article  Google Scholar 

  • Rice, M. M., R. L. Maher, A. M. S. Correa, H. V. Moeller, N. P. Lemoine, A. A. Shantz, D. E. Burkepile & N. J. Silbiger, 2020. Macroborer presence on corals increases with nutrient enrichment input and promotes parrotfish bioerosion. Coral Reefs 39: 409–418.

    Article  Google Scholar 

  • Riegl, B. & G. M. Branch, 1995. Effects of sediment on the energy budgets of four scleractinians (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals. Journal of Experimental Marine Biology and Ecology 186: 259–275.

    Article  Google Scholar 

  • Rodríguez-Troncoso, A. P., E. Carpizo-Ituarte & A. L. Cupul-Magaña, 2010. Differential response to cold and warm water conditions in Pocillopora colonies from the Central Mexican Pacific. Journal of Experimental Marine Biology and Ecology 391: 57–64.

    Article  Google Scholar 

  • Rodríguez-Troncoso, A. P., E. Carpizo-Ituarte, G. E. Leyte-Morales, G. Chi-Barragán & O. Tapia-Vázquez, 2011. Sexual reproduction of three coral species from the Mexican South Pacific. Marine Biology 158: 2673–2683.

    Article  Google Scholar 

  • Rodríguez-Troncoso, A. P., E. Carpizo-Ituarte, D. T. Pettay, M. E. Warner & A. L. Cupul-Magaña, 2014. The effects of an abnormal decrease in temperature on the Estern Pacific reef-building coral Pocillopora verrucosa. Marine Biology 161: 131–139.

    Article  CAS  Google Scholar 

  • Rodríguez-Troncoso, A. P., E. Carpizo-Ituarte & A. L. Cupul-Magaña, 2016. Physiological response to high temperature in the Tropical Eastern Pacific coral Pocillopora verrucosa. Marine Ecology 37: 1168–1175.

    Article  Google Scholar 

  • Rogers, C. S., 1990. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series 62: 185–202.

    Article  Google Scholar 

  • Rouzé, H., G. Lecellier, M. J. Langlade, S. Planes & V. Berteaux-Lecellier, 2015. Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities. Marine Pollution Bulletin 92: 212–221.

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Valentín, J. D., S. B. Colley, P. W. Glynn, A. L. Cupul-Magaña, R. A. López-Pérez, F. A. Rodríguez-Zaragoza, F. Benítez-Villalobos, E. Bautista-Guerrero, D. A. Zavala-Casas & A. P. Rodríguez-Troncoso, 2018. Regional and species specific sexual reproductive patterns of three zooxanthellate scleractinian corals across the Eastern Tropical Pacific. Marine Ecology 39: e12497.

    Article  Google Scholar 

  • Séré, M. G., L. M. Massé, R. Perissinotto & M. H. Schleyer, 2010. Influence of heterotrophic feeding on sexual reproduction of Pocillopora verrucosa in aquaria. Journal of Experimental Marine Biology and Ecology 395: 63–71.

    Article  Google Scholar 

  • Silbiger, N. J., O. Guadayol, F. I. M. Thomas & M. J. Donahue, 2014. Reefs shift from net accretion to net erosion along a natural environmental gradient. Marine Ecology Progress Series 515: 33–44.

    Article  Google Scholar 

  • Silbiger, M. J. & M. J. Donahue, 2015. Secondary calcification and dissolution respond differently to future ocean conditions. Biogeosciences 12: 567–578.

    Article  Google Scholar 

  • Smith, L. W., D. Barshis & C. Birkeland, 2007. Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. Coral Reefs 26(3): 559–567.

    Article  Google Scholar 

  • Souter, D. W. & O. Lindén, 2000. The health and future of coral reef systems. Ocean and Coastal Management 43: 657–688.

    Article  Google Scholar 

  • Spalding, M., L. Burke, S. A. Wood, J. Ashpole, J. Hutchinson & P. zu Ermgassen, 2017. Mapping global value and distribution of coral reef tourism. Marine Policy 82: 104–113.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis, Fisheries Research Board of Canada, Ottawa:

    Google Scholar 

  • StatSoft Inc., 2007. STATISTICA (data analysis software system), version 8.0. www.statsoft.com

  • Sully, S. & R. van Woesik, 2020. Turbid reefs moderate coral bleaching under climate-related temperature stress. Global Change Biology 26: 1367–1373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szmant, A. M., 2002. Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25(4): 743–766.

    Article  CAS  Google Scholar 

  • Todd, P. A., X. Ong & L. M. Chou, 2010. Impacts of pollution on marine life in Southeast Asia. Biodiversity and Conservation 19: 1063–1082.

    Article  Google Scholar 

  • Tortolero-Langarica, J. J. A., A. P. Rodríguez-Troncoso, J. P. Carricart-Ganivet & A. L. Cupul-Magaña, 2016. Skeletal extension, density and calcification rates of massive free-living coral Porites lobate Dana, 1846. Journal of Experimental Marine Biology and Ecology 478: 68–76.

    Article  Google Scholar 

  • Tortolero-Langarica, J. J. A., J. P. Carricart-Ganivet, L. A. Cupul-Magaña & A. P. Rodríguez-Troncoso, 2017a. Historical insights on growth rates of the reef building corals Pavona gigantea and Porites panamensis from the Northeastern tropical Pacific. Marine Environmental Research 132: 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Totolero-Langarica, J. J. A., A. P. Rodríguez-Troncoso, A. L. Cupul-Magaña & J. P. Carricart-Ganivet, 2017b. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 5: e3191.

    Article  Google Scholar 

  • Tortolero-Langarica, J. J. A., A. P. Rodríguez-Troncoso, A. L. Cupul-Magaña, L. C. Alarcón-Ortega & J. D. Santiago-Valentín, 2019. Accelerated recovery of calcium carbonate production in coral reefs using low-tech ecological restoration. Ecological Engineering 128: 89–97.

    Article  Google Scholar 

  • Veron, J. E. N., M. G. Stafford-Smith, E. Turak, & L. M. DeVantier, 2016. Corals of the world. V. 0.01. http://www.coralsoftheworld.org/page/home/?version=0.01. Accessed 9 March 2021.

  • Wear, S. L. & R. B. Thurber, 2015. Sewage pollution: mitigation is key for coral reef stewardship. Annals of the New York Academy of Sciences 1355: 15–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb, A. E., S. A. Pomponi, F. C. van Duyl, G. J. Reichart & L. J. de Nooijer, 2019. pH regulation and tissue coordination pathways promote calcium carbonate bioerosion by excavating sponges. Science Reports 9: 1–10.

    Google Scholar 

  • Weinstein, D. K., R. L. Maher & A. M. S. Correa, 2019. Bioerosion. In Loya, Y., K. A. Puglise & T. C. L. Bridge (eds), Mesophotic coral ecosystems Springer, Switzerland: 829–847.

    Chapter  Google Scholar 

  • Wisshak, M., C. H. L. Schönberg, A. Form & A. Freidwald, 2012. Ocean acidification accelerates reef bioerosion. PLoS ONE 7: e45124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wizemann, A., S. D. Nandini, I. Stuhldreier, C. Sánchez-Noguera, M. Wisshak, H. Westphal, T. Rixen, C. Wild & C. E. Reymond, 2018. Rapid bioerosion in a tropical upwelling coral reef. PLoS ONE 13: e0202887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Prahl, H. & B. Vargas-Ángel, 1990. Tasa de crecimiento del coral Pocillopora damicornis en un arrecife costero del Pacífico colombiano. Revistas Científicas De La Universidad Del Valle 2: 37–43.

    Google Scholar 

  • Wulff, J. L. & L. W. Buss, 1979. Do sponges help hold coral reefs together? Nature 281: 474–475.

    Article  Google Scholar 

  • Zar, J. H., 2010. Biostatistical analysis, Prentice Hall, New Jersey:

    Google Scholar 

Download references

Acknowledgements

The present research was funded by the National Geographic Society, grants NGS-55349R-19 to APRT and EC-51496C-18 to VMC, and PROCER/CCER/DROPC/09/2016 to ALCM. VMC also received a Ph.D. scholarship from the Centro Nacional de Ciencia y Tecnología (CONACyT) while conducting the study and writing the manuscript (ID. 332939). Also, the authors thank Jeimy D. Santiago-Valentín, Aldo A. Zavala-Benítez, Amelia Muñoz, and Mario Luna for their assistance in field and laboratory work. Sampling collection was carried out under the federal Mexican permit PPF/DGOPA-061/18. Finally, the authors also thank the two anonymous reviewers for the valuable comments that improved the manuscript.

Funding

The present research was funded by the National Geographic Society, grants NGS-55349R-19 to APRT and EC-51496C-18 to VMC, and PROCER/CCER/DROPC/09/2016 to ALCM. VMC also received a Ph.D. scholarship from the Centro Nacional de Ciencia y Tecnología (CONACyT) while conducting the study and writing the manuscript (ID. 332939).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the research. VMC, APRT, JJATL, and ALCM performed field work. VMC, APRT, JJATL and EBG conducted laboratory work. VMC, JJATL, and JLPG analyzed data. VMC wrote the first draft of the manuscript and all authors commented on early versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alma Paola Rodríguez-Troncoso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

No animal testing was performed during this study.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Sofie Spatharis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Castillo, V., Rodríguez-Troncoso, A.P., de Jesús Adolfo Tortolero-Langarica, J. et al. Coral performance and bioerosion in Central Mexican Pacific reef communities. Hydrobiologia 849, 2395–2412 (2022). https://doi.org/10.1007/s10750-022-04879-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04879-9

Keywords

Navigation