Skip to main content

Bioerosion and Coral Reef Growth: A Dynamic Balance

  • Chapter
Coral Reefs in the Anthropocene

Abstract

Bioerosion, involving the weakening and breakdown of calcareous coral reef structures, is due to the chemical and mechanical activities of numerous and diverse biotic agents. These range in size from minute, primarily intra-skeletal organisms, the microborers (e.g., algae, fungi, bacteria) to larger and often externally-visible macroboring invertebrate (e.g., sponges, polychaete worms, sipunculans, molluscs, crustaceans, echinoids) and fish (e.g., parrotfishes, acanthurids, pufferfishes) species. Constructive coral reef growth and destructive bioerosive processes are often in close balance. Dead corals are generally subject to higher rates of bioerosion than living corals, therefore, bioerosion and reef degradation can result from disturbances that cause coral mortality, such as sedimentation, eutrophication, pollution, temperature extremes, predation, and coral diseases. The effects of intensive coral reef bioerosion, involving El Niño-Southern Oscillation, Acanthaster predation, watershed alterations, and over-fishing, are re-examined after ~20 years (early 1990s–2010). We review the evidence showing that the biologically-mediated dissolution of calcium carbonate structures by endolithic algae and clionaid sponges will be accelerated with ocean acidification. The CaCO3 budget dynamics of Caribbean and eastern tropical Pacific reefs is reviewed and provides sobering case studies on the current state of coral reefs and their future in a high-CO2 world.

The question at once arises, how is it that even the stoutest corals, resting with broad base upon the ground, and doubly secure from their spreading proportions, become so easily a prey to the action of the same sea which they met shortly before with such effectual resistance? The solution of this enigma is to be found in the mode of growth of the corals themselves. Living in communities, death begins first at the base or centre of the group, while the surface or tips still continue to grow, so that it resembles a dying centennial tree, rotten at the heart, but still apparently green and flourishing without, till the first heavy gale of wind snaps the hollow trunk, and betrays its decay. Again, innumerable boring animals establish themselves in the lifeless stem, piercing holes in all directions into its interior, like so many augurs, dissolving its solid connexion with the ground, and even penetrating far into the living portion of these compact communities.

L. Agassiz (1852)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agassiz L (1852) Coral reefs. In: Annual report of the Superintendent of the Coast Survey, showing the progress of that work during the year ending November, 1851, pp 153–154, 32d Congr, 1st Sess Senate Ex Doc No 3, R Armstrong, Printer

    Google Scholar 

  • Ahr WM, Stanton RJ Jr (1973) The sedimentologic and paleoecologic significance of Lithotrya, a rock-boring barnacle. J Sediment Petrol 43:20–23

    Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc Lond B Biol Sci 276:3019–3025

    Article  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267–272

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2009) Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? Bull Mar Sci 84:287–294

    Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Banks S, Vera M, Chiriboga Á (2009) Characterizing the last remaining reefs: establishing reference points to assess long term change in Galápagos zooxanthellate coral communities. Galapagos Res 66:43–64

    Google Scholar 

  • Banner AH (1974) Kaneohe Bay, Hawaii: urban pollution and a coral reef ecosystem. Proc 2nd Int Coral Reef Symp, Brisbane 2:685–702

    Google Scholar 

  • Bardach JE (1959) The summer standing crop of fish on a shallow Bermuda reef. Limnol Oceanogr 4:77–85

    Article  Google Scholar 

  • Bardach JE (1961) Transport of calcareous fragments by reef fishes. Science 133:98–99

    Article  CAS  PubMed  Google Scholar 

  • Barnes DJ (ed) (1983) Perspectives on coral reefs. Brian Clouston, Manuka, 277 p

    Google Scholar 

  • Bellwood DR (1995) Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Mar Biol 121:419–429

    Article  Google Scholar 

  • Bellwood DR (1996) Production and reworking of sediment by parrotfishes (family Scaridae) on the Great Barrier Reef, Australia. Mar Biol 125:795–800

    Article  Google Scholar 

  • Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fish 28:189–214

    Article  Google Scholar 

  • Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic, San Diego, pp 5–32

    Chapter  Google Scholar 

  • Birkeland C, Lucas JS (1990) Acanthaster planci: major management problem of coral reefs. CRC Press, Boca Raton, 257 p

    Google Scholar 

  • Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implication of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71

    Article  Google Scholar 

  • Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431

    Article  Google Scholar 

  • Carriker MR, Smith EH, Wilce RT (eds) (1969) Penetration of calcium carbonate substrates by lower plants and invertebrates. Am Zool 9:629–1020

    Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375–390

    Google Scholar 

  • Choat JH, Bellwood DR (1985) Interactions amongst herbivorous fishes on a coral reef: influence of spatial variation. Mar Biol 89:221–234

    Article  Google Scholar 

  • Choat JH, Robertson DR (1975) Protogynous hermaphroditism in fishes of the family Scaridae. In: Reinboth R (ed) Intersexuality in the animal kingdom. Springer, Berlin, pp 264–283

    Google Scholar 

  • Cloud PE Jr (1959) Geology of Saipan, Mariana Islands, Part 4. Submarine topography and shoal-water ecology. Geol Surv Prof Pap 280-K:361–445

    Google Scholar 

  • Coles SL, Marchetti J, Bolick H, Montgomery A (2007) Assessment of invasiveness of the orange keyhole sponge Mycale armata in Kaneohe Bay, O’ahu, Hawai’i. Final Report, Year 2 for Hawaii Coral Reef Initiative Research Program. Contribution No. 2007-002 to the Hawaii Biological Survey, 30 p

    Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Global Change Biol 14:529–538

    Article  Google Scholar 

  • Cortés J (1985) Preliminary observations of Alpheus simus Guerin-Meneville, 1856 (Crustacea: Alphaeidae): a little-known Caribbean bioeroder. Proc 5th Int Coral Reef Congr Tahiti 5:351–353

    Google Scholar 

  • Darwin C (1842) The structure and distribution of coral reefs. Smith Elder & Co., London, 214 p

    Google Scholar 

  • Davies PJ, Hutchings PA (1983) Initial colonization, erosion and accretion on coral substrate. Experimental results, Lizard Island, Great Barrier Reef. Coral Reefs 2:27–35

    Article  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Article  PubMed  CAS  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999

    Article  PubMed Central  PubMed  Google Scholar 

  • DiSalvo LH (1969) Isolation of bacteria from the corallum of Porites lobata (Vaughan) and its possible significance. Am Zool 9:735–740

    Article  Google Scholar 

  • Donn TF, Boardman MR (1988) Bioerosion of rocky carbonate coastlines on Andros Island, Bahamas. J Coastal Res 4:381–394

    Google Scholar 

  • Eakin CM (1993) Post-El Niño Panamanian reefs: less accretion, more erosion and damselfish protection. Proc 7th Int Coral Reef Symp Guam 1:387–396

    Google Scholar 

  • Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–83 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15:109–119

    Google Scholar 

  • Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panamá. Bull Mar Sci 69:171–186

    Google Scholar 

  • Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brant M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BC, Chiappone M, Christensen TRL, Crabbe MJC, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam D, Ginsburg R, Gore S, Guzman HM, Hendee JC, Hernandez-Delgado E, Husain E, Jeffrey CFG, Jones RJ, Jordan-Dahlgren E, Kaufman DM, Kline DI, Kramer P, Lang J, Lirman D, Mallela J, Manfrino C, Marechal J, Marks K, Mihaly J, Miller J, Muller EM, Muller M, Orozco-Toro CA, Oxenfor HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodriguez S, Rodriguez-Ramirez A, Romano S, Samhouri JF, Sanchez JA, Schmahl GP, Shank B, Skirving WJ, Steiner SCC, Villamizar E, Walsh S, Walter C, Weil E, Williams EH, Woody K, Yusuf Y (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5:e13969

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ebbs NK (1966) The coral-inhabiting polychaetes of the northern Florida reef tract. Bull Mar Sci 16:485–555

    Google Scholar 

  • Edgar GJ, Banks SA, Brandt M, Bustamante RH, Chiriboga Á, Earle SA, Garske LE, Glynn PW, Grove JS, Henderson S, Hickman CP, Miller KA, Rivera F, Wellington GM (2010) El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Global Change Biol 16:2876–2890

    Article  Google Scholar 

  • Edmunds PJ (2007) Evidence for a decadal-scale decline in the growth rates of juvenile scleractinian corals. Mar Ecol Prog Ser 341:1–13

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (eds) (1984) Ichnology: the use of trace fossils in sedimentology and stratigraphy. SEPM short course notes, Ch 10, 15:108–128. doi: 10.2110/scn.84.15

  • Endean R (1976) Destruction and recovery of coral reef communities. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. III. Biology 2. Academic, New York, pp 215–254

    Chapter  Google Scholar 

  • Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722

    Article  Google Scholar 

  • Enochs IC, Manzello DP (2012a) Species richness of motile cryptofauna across a gradient of framework erosion. Coral Reefs 31:653–661

    Article  Google Scholar 

  • Enochs IC, Manzello DP (2012b) Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4:94–104

    Article  Google Scholar 

  • Enochs IC, Manzello DP, Carlton R, Graham D, Ruzicka R, Colella M (2015) Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for persistence of the Florida Reef Tract. Bull Mar Sci 91(2):271–290

    Article  Google Scholar 

  • Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013a) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global Change Biol. doi:10.1111/gcb.12334

    Google Scholar 

  • Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S (2013b) Effects of ocean warming and acidification on the energy budget of an excavating sponge. Global Change Biol. doi:10.1111/gcb.12369

    Google Scholar 

  • Focke JW (1978) Limestone cliff morphology on Curaçao (Netherlands Antilles) with special attention to the origin of notches and vermetid/coralline algal surf benches (“cornices”, “trottoirs”). Z Geomorphol 22:329–349

    Google Scholar 

  • Frieler K, Meinhausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2013) Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Chang 3:165–170

    Article  Google Scholar 

  • Frydl P, Stearn GW (1978) Rate of bioerosion by parrotfish in Barbados reef environments. J Sediment Petrol 48:1149–1157

    Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg RN (1983) Geological and biological roles of cavities in coral reefs. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouston, Manuka, pp 148–153

    Google Scholar 

  • Glynn PW (1970) On the ecology of the Caribbean chitons Acanthopleura granulata Gmelin and Chiton tuberculatus Linné: density, mortality, feeding, reproduction, and growth. Smithson Contrib Zool 66:1–21

    Article  Google Scholar 

  • Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160

    Google Scholar 

  • Glynn PW (1990a) Feeding ecology of selected coral-reef macroconsumers: patterns and effects on coral community structure. In: Dubinsky Z (ed) Ecosystems of the world, vol 25, Coral reefs. Elsevier Science, New York, pp 365–400

    Google Scholar 

  • Glynn PW (1990b) Coral mortality and disturbance to coral reefs in the eastern tropical Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 55–126

    Chapter  Google Scholar 

  • Glynn PW (1994) State of coral reefs in the Galápagos Islands: natural vs anthropogenic impacts. Mar Pollut Bull 29:131–140

    Article  CAS  Google Scholar 

  • Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands (with an annotated list of the scleractinian corals of the Galápagos by JW Wells). University of California Press, Berkeley, 330 p

    Google Scholar 

  • Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panamá: structure, distribution and predators. Geol Rundsch 61:483–519

    Article  Google Scholar 

  • Glynn PW, Wellington GM, Birkeland C (1979) Coral growth in the Galápagos: limitation by sea urchins. Science 203:47–49

    Article  CAS  PubMed  Google Scholar 

  • Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panamá and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–101

    Google Scholar 

  • Glynn PW, Riegl B, Correa AMS, Baums IB (2009) Rapid recovery of a coral reef at Darwin Island, Galápagos Islands. Galapagos Res 66:6–13

    Google Scholar 

  • Glynn PW, Enochs IC, Afflerbach JA, Brandtneris VW, Serafy JE (2014) Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar Ecol Prog Ser 495:233–247

    Article  Google Scholar 

  • Glynn PW, Riegl B, Purkis S, Kerr JM, Smith TB (2015) Coral reef recovery in the Galápagos Islands: the northernmost islands (Darwin and Wenman). Coral Reefs 34:421–436

    Google Scholar 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, New York, pp 229–259

    Chapter  Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  CAS  PubMed  Google Scholar 

  • Grassle JF (1973) Variety in coral reef communities. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. II, Biology 1. Academic, New York, pp 247–270

    Chapter  Google Scholar 

  • Grigg RW, Dollar SJ (1990) Natural and anthropogenic disturbance on coral reefs. In: Dubinsky Z (ed) Ecosystems of the world, vol 25, Coral reefs. Elsevier Science, New York, pp 439–452

    Google Scholar 

  • Haigler SA (1969) Boring mechanism of Polydora websteri inhabiting Crassostrea virginica. Am Zool 9:821–828

    Article  Google Scholar 

  • Highsmith RC (1980) Geographic patterns of coral bioerosion: a productivity hypothesis. J Exp Mar Biol Ecol 46:177–196

    Article  Google Scholar 

  • Highsmith RC (1981a) Lime-boring algae in hermatypic coral skeletons. J Exp Mar Biol Ecol 55:267–281

    Article  Google Scholar 

  • Highsmith RC (1981b) Coral bioerosion: damage relative to skeletal density. Am Nat 117:193–198

    Article  Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226

    Article  Google Scholar 

  • Hill MS, Hill AL (2002) Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. Biol Bull 202:86–95

    Article  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Holmes KE, Edinger EN, Limmon GV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606–617

    Article  CAS  Google Scholar 

  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM, Moyer R, Pelejero C, Ziveri P, Foster GI, Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Hudson JH, Diaz R (1988) Damage survey and restoration of M/V WELLWOOD grounding site, Molasses Reef, Key Largo National Marine Sanctuary, Florida. Proc 6th Int Coral Reef Symp Townsville 2:231–236

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252

    Article  Google Scholar 

  • Hutchings PA (1994) The Pacific reefs: a paradise lost? Mar Pollut Bull 29:1–140

    Article  CAS  Google Scholar 

  • Hutchings PA (2011) Bioerosion. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Dordrecht, pp 139–156

    Chapter  Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, New York

    Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  CAS  PubMed  Google Scholar 

  • Jokiel PL (1986) Growth of the reef coral Porites compressa on the Coconut Island reef, Kaneohe Bay. In: Jokiel PL, Richmond RH, Rogers RA (eds) Coral reef population biology, Tech Rept No 37, Hawaii Inst Mar Biol, Oahu, pp 101–110

    Google Scholar 

  • Jokiel PL, Hunter CL, Taguchi S, Watarai L (1993) Ecological impact of a fresh-water “reef kill” in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12:177–184

    Article  Google Scholar 

  • Kendrick B, Risk MJ, Michaelides J, Bergman K (1982) Amphibious microborers: bioeroding fungi isolated from live corals. Bull Mar Sci 32:862–867

    Google Scholar 

  • Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Curr Biol 23:912–918

    Article  CAS  PubMed  Google Scholar 

  • Kiene WE (1988) A model of bioerosion on the Great Barrier Reef. Proc 6th Int Coral Reef Symp Townsville 3:449–454

    Google Scholar 

  • Kinsey DW (1983) Standards of performance in coral reef primary production and carbonate turnover. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouston, Manuka, pp 209–220

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999a) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  PubMed  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999b) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:1–16

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like biomineralization. Mar Ecol Prog Ser 117:137–147

    Article  Google Scholar 

  • Leão ZMAN, Telles MD, Sforza R, Bulhões HA, Kikuchi RKP (1993) Impact of tourism development on the coral reefs of the Abrolhos area, Brazil. In: Ginsburg RN (compiler) Global aspects of coral reefs: health, hazards and history. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, pp 254–260

    Google Scholar 

  • Lirman D, Schopmeyer S, Manzello D, Gramer LJ, Precht WF, Muller-Karger F, Banks K, Barnes B, Bartels E, Bourque A, Byrne J, Donahue S, Duquesnel J, Fisher L, Gilliam D, Hendee J, Johnson M, Maxwell K, McDevitt E, Monty J, Rueda D, Ruzicka R, Thanner S (2011) Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida Reef Tract and reversed previous survivorship patterns. PLoS One 6:e23047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowenstam HA (1974) Impact of life on chemical and physical processes. In: Goldberg ED (ed) The sea, vol 5, Marine Chemistry. Wiley, New York, pp 715–796

    Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York, 324 p

    Google Scholar 

  • Macintyre IG (1984) Preburial and shallow-subsurface alteration of modern scleractinian corals. In: Oliver WA Jr, Sando WJ, Cairns SD, Coates AG, Macintyre IG, Bayer FM, Sorauf JE (eds) Recent advances in the paleobiology and geology of the Cnidaria. Palaeontographica Americana, Ithaca, New York, 54, pp 229–244

    Google Scholar 

  • Macintyre IG (1997) Reevaluating the role of crustose coralline algae in the construction of coral reefs. Proc 8th Intl Coral Reef Symp Panama 1:725–730

    Google Scholar 

  • Manzello DP (2009) Reef development and resilience to acute (El Niño warming) and chronic (high-CO2) disturbances in the eastern tropical Pacific: a real-world climate change model. Proc 11th Intl Coral Reef Symp Ft Lauderdale 1:1299–1304

    Google Scholar 

  • Manzello DP (2010a) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248

    Article  CAS  Google Scholar 

  • Manzello DP (2010b) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci U S A 105:10450–10455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manzello DP, Enochs IC, Bruckner A, Renaud P, Kolodziej G, Budd DA, Carlton R, Glynn PW (2014) Galápagos coral reef persistence after ENSO warming across an acidification gradient. Geophys Res Lett 41:9001–9008

    Google Scholar 

  • May JA, Macintyre IG, Perkins RD (1982) Distribution of microborers within planted substrates along a barrier reef transect, Carrie Bow Cay, Belize. In: Rützler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize I: structure and communities, Smith Contrib Mar Sci, Washington DC,12, 539 p

    Google Scholar 

  • McClanahan TR, Shafir SH (1990) Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia 83:362–370

    Article  Google Scholar 

  • McLean RF (1967) Measurement of beach rock erosion by some tropical marine gastropods. Bull Mar Sci 17:551–561

    Google Scholar 

  • Moran PJ (1986) The Acanthaster phenomenon. Oceanogr Mar Biol Ann Rev 24:379–480

    Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rates of the sponge Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Ogden JC (1977) Carbonate-sediment production by parrotfish and sea urchins on Caribbean reefs. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates—ecology and sedimentology. Studies in geology 4. American Association of Petroleum Geologists, Tulsa, pp 281–288

    Google Scholar 

  • Pari N, Peyrot-Clausade M, Le Campion-Alsumard T, Hutchings P, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119–130

    Article  Google Scholar 

  • Pearson RG (1981) Recovery and recolonization of coral reefs. Mar Ecol Prog Ser 4:105–122

    Article  Google Scholar 

  • Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Sci Rev 86:106–144

    Article  Google Scholar 

  • Perry CT, Edinger EN, Kench PS, Murphy GN, Smithers SG, Steneck RS, Mumby PJ (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31:853–868

    Article  Google Scholar 

  • Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, Mumby PJ (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nature Commun 4:1–7

    Article  CAS  Google Scholar 

  • Peters EC (1984) A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgoländer Meeresun 37:113–137

    Article  Google Scholar 

  • Podestá GP, Glynn PW (2001) The 1997–98 El Niño event in Panamá and Galápagos: an update of thermal stress indices relative to coral bleaching. Bull Mar Sci 69:43–60

    Google Scholar 

  • Pomponi SA (1979) Ultrastructure and cytochemistry of the etching area of boring sponges. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires, Colloques Internationaux du Centre National de la Recherche Scientifique, Paris, 291, pp 317–323

    Google Scholar 

  • Randall JE (1974) The effects of fishes on coral reefs. Proc 2nd Int Coral Reef Symp Brisbane 1:159–166

    Google Scholar 

  • Rasmussen KA, Frankenberg EW (1990) Intertidal bioerosion by the chiton Acanthopleura granulata; San Salvador, Bahamas. Bull Mar Sci 47:680–695

    Google Scholar 

  • Reaka-Kudla ML, Feingold JS, Glynn PW (1996) Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands. Coral Reefs 15:101–107

    Article  Google Scholar 

  • Reyes-Nivia C, Diaz-Pulido G, Kline D, Hoegh-Guldberg O, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Global Chang Biol 19:1919–1929

    Article  Google Scholar 

  • Rice ME, Macintyre IG (1972) A preliminary study of sipunculan burrows in rock thin sections. Carib J Sci 12:41–44

    Google Scholar 

  • Rice ME, Macintyre IG (1982) Distribution of Sipuncula in the coral reef community, Carrie Bow Cay, Belize. In: Rützler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize I: structure and communities. Smithson Contrib Mar Sci, Washington, DC, pp 311–320

    Google Scholar 

  • Risk MJ, MacGeachy JK (1978) Aspects of bioerosion of modern Caribbean reefs. Rev Biol Trop 26(suppl 1):85–105

    Google Scholar 

  • Risk MJ, Sammarco PW (1982) Bioerosion of corals and the influence of damselfish territoriality: a preliminary study. Oecologia 52:376–380

    Article  Google Scholar 

  • Risk MJ, Dunn JJ, Allison WR, Horrill C (1993) Reef monitoring in Maldives and Zanzibar: low-tech and high-tech science. In: Ginsburg RN (compiler) Global aspects of coral reefs: health, hazards and history. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, pp 66–72

    Google Scholar 

  • Risk MJ, Sammarco PW, Edinger EN (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86

    Article  Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastraea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. PSZNI Mar Ecol 6:345–363

    Article  Google Scholar 

  • Russo AR (1980) Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinometra aciculatus) on Enewetak Atoll, Marshall Islands. J Mar Res 38:99–110

    Google Scholar 

  • Rützler K (1974) The burrowing sponges of Bermuda. Smithson Contrib Zool 165:1–32

    Article  Google Scholar 

  • Rützler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19:203–216

    Article  Google Scholar 

  • Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72

    Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162

    Article  Google Scholar 

  • Rützler K, Santavy DL, Antonius A (1983) The black band disease of Atlantic reef corals. III. Distribution, ecology, and development. PSZNI Mar Ecol 4:329–358

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Sano M (2000) Stability of reef fish assemblages: responses to coral recovery after catastrophic predation by Acanthaster planci. Mar Ecol Prog Ser 198:121–130

    Article  Google Scholar 

  • Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic coral by Acanthaster planci infestation on reef fish communities of Iriomote Island, Japan. Mar Ecol Prog Ser 37:191–199

    Article  Google Scholar 

  • Schönberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. PSZNI Mar Ecol 23:313–326

    Article  Google Scholar 

  • Schönberg CHL, Ortiz JC (2009) Is sponge bioerosion increasing? Proc 11th Int Coral Reef Symp, Ft. Lauderdale, USA, pp 520–523

    Google Scholar 

  • Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter IG, MacGeachy JK (1980) Calcium carbonate budget of a fringing reef on the west coast of Barbados. Part II—Erosion, sediments and internal structure. Bull Mar Sci 30:475–508

    CAS  Google Scholar 

  • Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151

    Article  CAS  Google Scholar 

  • Scott PJB, Risk MJ, Carriquiry JD (1988) El Niño, bioerosion and the survival of east Pacific reefs. Proc 6th Int Coral Reef Symp Townsville 2:517–520

    Google Scholar 

  • Smith SR, Ogden JC (eds) (1993) Status of recent history of coral reefs at the CARICOMP network of Caribbean marine laboratories. In: Ginsburg RN (compiler) Global aspects of coral reefs: health, hazards and history. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, pp 73–79

    Google Scholar 

  • Smith SV, Kimmerer WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem response to nutritional perturbation. Pac Sci 35:279–402

    CAS  Google Scholar 

  • Steneck RS (1983a) Quantifying herbivory on coral reefs: just scratching the surface and still biting off more than we can chew. In: Reaka ML (ed) The ecology of deep and shallow coral reefs. NOAA Symp Ser Undersea Res, Walpole, Maine 1:103–111

    Google Scholar 

  • Steneck RS (1983b) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:44–61

    Google Scholar 

  • Stimson J, Conklin E (2008) Potential reversal of a phase shift: the rapid decrease in the cover of the invasive green macroalga Dictyosphaeria cavernosa Forsskål on coral reefs in Kāne’ohe Bay, Oahu, Hawai’i. Coral Reefs 27:717–726

    Article  Google Scholar 

  • Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528

    Article  Google Scholar 

  • Tomascik T, Mah AJ, Nontji A, Moosa MK (1997) The ecology of the Indonesian seas. Vol. 8, part II, chapters 13–23, Oxford University Press, Oxford, pp 1231–1239

    Google Scholar 

  • Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 67–94

    Chapter  Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434

    Article  Google Scholar 

  • Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 435–449

    Chapter  Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cycles 23:1–7

    Google Scholar 

  • Trudgill ST (1976) The marine erosion of limestones on Aldabra Atoll, Indian Ocean. Z Geomorph NF Suppl Bd 26:164–200

    CAS  Google Scholar 

  • Trudgill ST (1983) Measurements of rates of erosion of reefs and reef limestones. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouster, Manuka, pp 256–262

    Google Scholar 

  • Tudhope AW, Risk MJ (1985) Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. J Sediment Petrol 55:440–447

    Google Scholar 

  • Tunnicliffe V (1979) The role of boring sponges in coral fracture. In: Levi C and Boury-Esnault N (eds) Biologie des spongiaires. Centre National de la Recherche Scientifique, Paris, No. 291, pp 309–315

    Google Scholar 

  • van Hooidonk R, Maynard J, Manzello DP, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Global Chang Biol. doi:10.1111/gcb.12394

    Google Scholar 

  • Vénec-Peyré M-T (1996) Bioeroding foraminifera: a review. Mar Micropaleontol 28:19–30

    Article  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation, an ecological history of life. Princeton University Press, Princeton, 531 p

    Google Scholar 

  • Vogel K (1993) Bioeroders in fossil reefs. Facies 28:109–114

    Article  Google Scholar 

  • Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Mar Pollut Bull 51:570–579

    Article  CAS  PubMed  Google Scholar 

  • Warme JE (1975) Borings as trace fossils, and the processes of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, New York, pp 181–227

    Chapter  Google Scholar 

  • Warme JE (1977) Carbonate borers—their role in reef ecology and preservation. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates—ecology and sedimentology. AAPG Stud Geol 4, American Association of Petroleum Geologists, Tulsa, pp 261–279

    Google Scholar 

  • Wellington GM, Glynn PW (2007) Responses of coral reefs to El Niño-Southern Oscillation sea-warming events. In: Aronson RB (ed) Geological approaches to coral reef ecology. Springer, New York, pp 342–385

    Google Scholar 

  • Wilkinson CR (1983) Role of sponges in coral reef structural processes. In: Barnes DJ (ed) Perspectives on coral reefs. Brian Clouston, Manuka, pp 263–274

    Google Scholar 

  • Wilson MA (2008) An online bibliography of bioerosion references. In: Wisshack M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 473–478

    Chapter  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS One 7:e45124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zea S, Weil E (2003) Taxonomy of the Caribbean excavating sponge species complex Cliona caribbaea-C. aprica-C. langae (Porifera, Hadromerida, Clionaidae). Carib J Sci 39:348–370

    Google Scholar 

  • Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges-lessons from Pione cf. vastifica. J Exp Biol 210:91–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due Charles G Messing, Klaus Rützler, Paul L Jokiel and other referenced workers for the illustrations in this chapter. Michael J Risk and Charles Birkeland are acknowledged for helping with various literature leads, and Ann Campbell for her diligence in providing numerous published sources. Updating of the condition of the Coconut Island fringing reef was made possible by C Birkeland, PL Jokiel, John Stimson, and Nadiera Sukhraj. Joshua Levy kindly assisted in up-dating Fig. 4.12 and Michael P. C. Fuller with page proofing. Research reported by PW Glynn was supported by the Smithsonian Tropical Research Institute, National Science Foundation (Biological Oceanography Program), and the National Geographic Society. DP Manzello has received support from the National Oceanic and Atmospheric Administration via the Coral Reef Conservation and Ocean Acidification Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Glynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glynn, P.W., Manzello, D.P. (2015). Bioerosion and Coral Reef Growth: A Dynamic Balance. In: Birkeland, C. (eds) Coral Reefs in the Anthropocene. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7249-5_4

Download citation

Publish with us

Policies and ethics