Skip to main content

Factors Determining the Resilience of Coral Reefs to Eutrophication: A Review and Conceptual Model

  • Chapter
  • First Online:
Coral Reefs: An Ecosystem in Transition

Abstract

Eutrophication and increased sedimentation have severely degraded many coastal coral reefs around the world. This chapter reviews the main impacts of eutrophication on the ecology of coral reefs and the properties of reefs that determine their exposure, resistance, and resilience to it. It shows that eutrophication affects coral reefs by way of nutrient enrichment, light loss from turbidity, and the smothering and alteration of surface properties from sedimentation. These changes lead to changes in trophic structures, reduced coral recruitment and diversity, the replacement of corals by macroalgae, and more frequent outbreaks of coral-eating crown-of-thorns starfish. The reefs and areas most susceptible to degradation from pollution are deeper reef slopes, reefs located in poorly flushed locations and surrounded by a shallow sea floor, frequently disturbed reefs, and reefs with low abundances of herbivorous fishes. The chapter concludes with a conceptual model of the main links between water quality and the condition of inshore coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts LAM, Van Soest RWM (1997) Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Mar Ecol Prog Ser 148:125–134

    Article  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259

    Article  Google Scholar 

  • Baird AH, Babcock RC, Mundy CP (2003) Habitat selection by larvae influences the depth distribution of six common coral species. Mar Ecol Prog Ser 252:289–293

    Article  Google Scholar 

  • Bak RPM (1978) Lethal and sublethal effects of dredging on reef corals. Mar Pollut Bull 9:14–16

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  Google Scholar 

  • Birkeland C (1982) Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Mar Biol 69:175–185

    Article  Google Scholar 

  • Birkeland C (1988) Geographic comparisons of coral-reef community processes. In: Choat JH, Barnes D, Borowitzka M, Coll JC, Davies PJ, Flood P, Hatcher BG, Hopley D, Hutchings PA, Kinsey DW, Orme GR, Pichon M, Sale PF, Sammarco PW, Wallace CC, Wilkinson C, Wolanski E, Bellwood O (eds) Proceedings of the 6th international coral reef symposium, Townsville, 1988, pp 211–220

    Google Scholar 

  • Birkeland C (1997) Geographic differences in ecological processes on coral reefs. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 273–287

    Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414

    Article  CAS  Google Scholar 

  • Bourke L, Selig E, Spalding M (2002) Reefs at risk in Southeast Asia. World Resources Institute, Cambridge

    Google Scholar 

  • Brock RE, Smith SV (1983) Response of coral reef cryptofaunal communities to food and space. Coral Reefs 1:179–183

    Article  Google Scholar 

  • Brodie J, Fabricius K, De’ath G, Okaji K (2005) Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Mar Pollut Bull 51:266–278

    Article  CAS  Google Scholar 

  • Bruno J, Selig E (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. Public Libr Sci ONE 2:e711. doi:710.1371/journal.pone.0000711

    Google Scholar 

  • Bruno J, Petes LE, Harvell D, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6:1056–1061

    Article  Google Scholar 

  • Bryant DG, Burke L, McManus J, Spalding M (1998) Reefs at risk: a map-based indicator of threats to the world’s coral reefs. World Resources Institute, Washington, DC

    Google Scholar 

  • Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16(Suppl):101–113

    Article  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488

    Article  Google Scholar 

  • Cooper T, Gilmour J, KE F (2009) Coral-based bioindicators of changes in water quality on coastal coral reefs: a review and recommendations for monitoring programs. Coral Reefs 28:589–606

    Article  Google Scholar 

  • Cornell HV, Karlson RH (2000) Coral species richness: ecological versus biogeographical influences. Coral Reefs 19:37–49

    Article  Google Scholar 

  • Cortes JN, Risk MJ (1985) A reef under siltation stress: Cahuita, Costa Rica. Bull Mar Sci 36:339–356

    Google Scholar 

  • Costa OS Jr, Leao ZM, Nimmo M, Attrill MJ (2000) Nutrification impacts on coral reefs from northern Bahia, Brazil. Hydrobiologia 440:370–415

    Google Scholar 

  • Crossland CJ, Bairn D, Ducrotoy JP (2005) The coastal zone: a domain of global interactions. In: Crossland CJ (ed) Coastal fluxes in the anthropocene. Springer, Berlin, pp 1–37

    Chapter  Google Scholar 

  • Cuet P, Naim O, Faure G, Conan JY (1988) Nutrient-rich groundwater impact on benthic communities of La Saline fringing reef (Reunion Island, Indian Ocean): preliminary results. In: Choat JH, Barnes D, Borowitzka M, Coll JC, Davies PJ, Flood P, Hatcher BG, Hopley D, Hutchings PA, Kinsey DW, Orme GR, Pichon M, Sale PF, Sammarco PW, Wallace CC, Wilkinson C, Wolanski E, Bellwood O (eds) Proceedings of the 6th international coral reef symposium, Townsville, 1988, pp 207–212

    Google Scholar 

  • De’ath G, Fabricius KE (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl 20:840–850

    Article  Google Scholar 

  • DeVantier L, De’ath G, Done T, Turak E, Fabricius K (2006) Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral Reefs 25:329–340

    Article  Google Scholar 

  • Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30:275–281

    Article  CAS  Google Scholar 

  • Done TJ (1999) Coral community adaptability to environmental change at the scales of regions, reefs and reef zones. Am Zool 39:66–79

    Google Scholar 

  • Dubinsky Z, Stambler N (1996) Marine pollution and coral reefs. Glob Change Biol 2:511–526

    Article  Google Scholar 

  • Duce RA, LaRoche J, Altieri K, Arrigo K, Baker A et al (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897

    Article  CAS  Google Scholar 

  • Dumont E, Harrison JA, Kroeze C, Bakker EJ, Seitzinger SP (2005) Global distribution and sources of DIN export to the coastal zone: results from a spatially explicit, global model (NEWS-DIN). Glob Biogeochem Cycles 19:GB4S02. doi:10.1029/2005GB002488: 1–14

    Article  Google Scholar 

  • Edinger EN, Jompa J, Limmon GV, Widjatmoko W, Risk MJ (1998) Reef degradation and coral biodiversity in Indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. Mar Pollut Bull 36:617–630

    Article  CAS  Google Scholar 

  • Fabricius K, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Fabricius K, De’ath G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Article  Google Scholar 

  • Fabricius K, Wild C, Wolanski E, Abele D (2003) Effects of transparent exopolymer particles (TEP) and muddy terrigenous sediments on the survival of hard coral recruits. Estuar Coast Shelf Sci 57:613–621

    Article  CAS  Google Scholar 

  • Fabricius K, De’ath G, McCook L, Turak E, Williams DM (2005) Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar Pollut Bull 51:384–398

    Article  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    Article  CAS  Google Scholar 

  • Fabricius KE, De’ath G (2004) Identifying ecological change and its causes: a case study on coral reefs. Ecol Appl 14:1448–1465

    Article  Google Scholar 

  • Fabricius KE, Okaji K, De’ath G (2010) Three lines of evidence to link outbreaks of the crown-ofthorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29:593–605

    Article  CAS  Google Scholar 

  • GESAMP (2001) Protecting the oceans from land-based activities. Land-based sources and activities affecting the quality and uses of the marine, coastal and associated freshwater environment. United Nations Environment Program, 71, Nairobi

    Google Scholar 

  • Gibbs RJ, Matthew MD, Link DA (1971) The relation between sphere size and settling velocity. J Sediment Petrol 41:7–18

    Google Scholar 

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimatol Palaeoecol 63:275–291

    Article  Google Scholar 

  • Hands MR, French JR, O’Neill A (1993) Reef stress at Cahuita point, Costa Rica: anthropogenically enhanced sediment influx or natural geomorphic change. J Coastal Res 9:11–25

    Google Scholar 

  • Harrington L, Fabricius K, De’ath G, Negri A (2004) Fine-tuned recognition and selection of settlement substrata determines post-settlement survival in corals. Ecology 85:3428–3437

    Article  Google Scholar 

  • Harrington L, Fabricius K, Eaglesham G, Negri A (2005) Synergistic effects of diuron and sedimentation on photosynthetic yields and survival of crustose coralline algae. Mar Pollut Bull 51:415–427

    Article  CAS  Google Scholar 

  • Hodgson G (1990) Tetracycline reduces sedimentation damage to corals. Mar Biol 104:493–496

    Article  CAS  Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Houk P, Bograd S, van Woesik R (2007) The transition zone chlorophyll front can trigger Acanthaster planci outbreaks in the Pacific Ocean: Historical confirmation. J Oceanogr 63:149–154

    Article  Google Scholar 

  • Hubbard DK, Scaturo D (1985) Growth rates of seven species of scleractinian corals from Cane Bay and Salt River, St. Croix, USVI. Bull Mar Sci 36:325–338

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystroem M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Hunter CL, Evans CW (1995) Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull Mar Sci 57:501–515

    Google Scholar 

  • Johannes RE, Wiebe WJ, Crossland CJ, Rimmer DW, Smith SV (1983) Latitudinal limits of coral reef growth. Mar Ecol Prog Ser 11:105–111

    Article  Google Scholar 

  • Kendrick GA (1991) Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. J Exp Mar Biol Ecol 147:47–63

    Article  Google Scholar 

  • Kleypas JA (1996) Coral reef development under naturally turbid conditions: fringing reefs near Broad Sound, Australia. Coral Reefs 15:153–167

    Google Scholar 

  • Koop K, Booth D, Broadbent A, Brodie J, Bucher D, Capone D, Coll J, Dennison W, Erdmann M, Harrison P, Hoegh-Guldberg O, Hutchings P, Jones GB, Larkum AWD, O’Neil J, Steven A, Tentori E, Ward S, Williamson J, Yellowlees D (2001) ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Pollut Bull 42:91–120

    Article  CAS  Google Scholar 

  • Lapointe BE, Bedford BJ (2007) Drift rhodophyte blooms emerge in Lee County, Florida, USA: evidence of escalating coastal eutrophication. Harmful Algae 6:421–437

    Article  CAS  Google Scholar 

  • Lapointe BE, Barile PJ, Yentsch CS, Littler MM, Littler DS, Kakuk B (2004) The relative importance of nutrient enrichment and herbivory on macroalgal communities near Norman’s Pond Cay, Exumas Cays, Bahamas: a ‘natural’ enrichment experiment. J Exp Mar Biol Ecol 298:275–301

    Article  Google Scholar 

  • Larcombe P, Woolfe K (1999) Increased sediment supply to the Great Barrier Reef will not increase sediment accumulation at most coral reefs. Coral Reefs 18:163–169

    Article  Google Scholar 

  • Littler MM, Littler DS (2007) Assessment of coral reefs using herbivory/nutrient assays and indicator groups of benthic primary producers: a critical synthesis, proposed protocols, and critique of management strategies. Aquat Conserv Mar Freshw Ecosyst 17:195–215

    Article  Google Scholar 

  • Loya Y, Lubinevsky H, Rosenfeld M, Kramarsky-Winter E (2004) Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar Pollut Bull 49:344–353

    Article  CAS  Google Scholar 

  • Luick JL, Mason L, Hardy T, Furnas MJ (2007) Circulation in the Great Barrier Reef Lagoon using numerical tracers and in situ data. Cont Shelf Res 27:757–778

    Article  Google Scholar 

  • Mallela J, Roberts C, Harrod C, Goldspink CR (2007) Distributional patterns and community structure of Caribbean coral reef fishes within a river-impacted bay. J Fish Biol 70:523–537

    Article  Google Scholar 

  • Marubini F (1996) The physiological response of hermatypic corals to nutrient enrichment. Ph.D. thesis, Faculty of Science, Glasgow

    Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328

    Article  CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  Google Scholar 

  • McClanahan TR, Obura D (1997) Sedimentation effects on shallow coral communities in Kenya. J Exp Mar Biol Ecol 209:103–122

    Article  Google Scholar 

  • McCook LJ (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18:357–367

    Article  Google Scholar 

  • McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730

    Article  CAS  Google Scholar 

  • Moody J, Butman B, Bothner M (1987) Near-bottom suspended matter concentration on the continental shelf during storms: estimates based on in situ observations of light transmission and a particle size dependent transmissometer calibration. Cont Shelf Res 7:609–628

    Article  Google Scholar 

  • Nyström M, Graham NAJ, Lokrantz J, Norström AV (2008) Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs 27:795–809

    Article  Google Scholar 

  • Pari N, Peyrot-Clausade M, Hutchings PA (2002) Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) during 5 years of exposure. J Exp Mar Biol Ecol 276:1–2

    Article  Google Scholar 

  • Philipp E, Fabricius K (2003) Photophysiological stress in scleractinian corals in response to short-term sedimentation. J Exp Mar Biol Ecol 287:57–78

    Article  Google Scholar 

  • Pimm LP (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Purcell SW (2000) Association of epilithic algae with sediment distribution on a windward reef in the northern Great Barrier Reef, Australia. Bull Mar Sci 66:199–214

    Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Article  Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Pubblicazioni della Stazione Zoologica di Napoli I: Mar Ecol 6:345–362

    Article  Google Scholar 

  • Rosenfeld M, Bresler V, Abelson A (1999) Sediment as a possible source of food for corals. Ecol Lett 2:345–348

    Article  Google Scholar 

  • Schaffelke B (1999) Particulate organic matter as an alternative nutrient source for tropical Sargassum species (Fucales, Phaeophyceae). J Phycol 35:1150–1157

    Article  CAS  Google Scholar 

  • Sebens KP (1991) Effects of water flow on coral growth and prey capture. Am Zool 31:59A

    Google Scholar 

  • Smith SV, Kimmener WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewerage diversion experiment: perspectives on ecosystem response to nutritional perturbation. Pac Sci 35:279–395

    CAS  Google Scholar 

  • Smith SV, Swaney DP, Talaue-Mcmanus L, Bartley JD, Sandhei PT, McLaughlin CJ, Dupra VC, Crossland CJ, Buddemeier RW, Maxwell BA, Wulff F (2003) Humans, hydrology and the distribution of inorganic nutrient loading to the ocean. Bioscience 53:235–245

    Article  Google Scholar 

  • Stafford-Smith MG, Ormond RFG (1992) Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Aust J Mar Freshw Res 43:683–705

    Article  Google Scholar 

  • Stambler N, Jokiel PL, Dubinsky Z (1994) Nutrient limitation in the symbiotic association between zooxanthellae and reef-building corals: the experimental design. Pac Sci 48:219–223

    Google Scholar 

  • Steneck R (1997) Crustose corallines, other algal functional groups, herbivore and sediments: complex interactions along reef productivity gradients. In: Proceedings of the 8th international coral reef symposium, Panama, pp 695–700

    Google Scholar 

  • Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25:743–766

    Article  CAS  Google Scholar 

  • Tilman D, Downing J (1994) Biodiversity and stability in grasslands. Nature 367:363–365

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  Google Scholar 

  • Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals. 1. Growth rate of the reef-building coral Montastrea annularis. Mar Biol 87:143–155

    Article  Google Scholar 

  • Tomascik T, Sander F (1987) Effects of eutrophication on reef-building corals. 2. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies. Mar Biol 94:53–75

    Article  Google Scholar 

  • U.S. Department of Health, Education, and Welfare (1964) Smoking and health: report of the advisory committee to the Surgeon General of the Public Health Service. Public Health Service Publication No 1103, Washington, DC

    Google Scholar 

  • van Woesik R, Tomascik T, Blake S (1999) Coral assemblages and physico-chemical characteristics of the Whitsunday Islands: evidence of recent community changes. Mar Freshw Res 50:427–440

    Google Scholar 

  • Vaquer-Sunye R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci U S A 105:15452–15457

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Weber M, Lott C, Fabricius K (2006) Different levels of sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, geochemical and organic properties. J Exp Mar Biol Ecol 336:18–32

    Article  CAS  Google Scholar 

  • West JM, Salm RV (2003) Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv Biol 17:956–967

    Article  Google Scholar 

  • Wilkinson C (2004) Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Change Biol 12:2220–2234

    Article  Google Scholar 

  • Wittenberg M, Hunte W (1992) Effects of eutrophication and sedimentation on juvenile corals. 1. Abundance, mortality and community structure. Mar Biol 116:131–138

    Article  Google Scholar 

  • Wolanski E, Richmond R, McCook L (2004) A model of the effects of land-based, human activities on the health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia. J Mar Syst 46:133–144

    Article  Google Scholar 

  • Wolanski E, Fabricius K, Spagnol S, Brinkman R (2005) Fine sediment budget on an inner-shelf coral-fringed island, Great Barrier Reef of Australia. Estuar Coast Shelf Sci 65:153–158

    Article  Google Scholar 

  • Wooldridge S, Done T, Berkelmans R, Jones R, Marshall P (2005) Precursors for resilience in coral communities in a warming climate: a belief network approach. Mar Ecol Prog Ser 295:157–169

    Article  Google Scholar 

  • Yentsch CS, Yentsch CM, Cullen JJ, Lapointe B, Phinney DA, Yentsch SW (2002) Sunlight and water transparency: cornerstones in coral research. J Exp Mar Biol Ecol 268:171–183

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Marine and Tropical Sciences Research Facility (MTSRF), a part of the Australian Government’s Commonwealth Environment Research Facilities Program, and the Australian Institute of Marine Science (AIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina E. Fabricius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fabricius, K.E. (2011). Factors Determining the Resilience of Coral Reefs to Eutrophication: A Review and Conceptual Model. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_28

Download citation

Publish with us

Policies and ethics