Skip to main content
Log in

New approaches to Prunus transcriptome analysis

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The recent sequencing of the complete genome of the peach offers new opportunities for further transcriptomic studies in Prunus species in the called post-genomics era. First works on transcriptome analysis in Prunus species started in the early 2000s with the development of ESTs (expressed sequence tags) and the analysis of several candidate genes. Later, new strategies of massive analysis (high throughput) of transcriptomes have been applied, producing larger amounts of data in terms of expression of a large number of genes in a single experiment. One of these systems is massive transcriptome analysis using cDNA biochips (microarrays) to analyze thousands of genes by hybridization of mRNA labelled with fluorescence. However, the recent emergence of a massive sequencing methodology (“deep-sequencing”) of the transcriptome (RNA-Seq), based on lowering the costs of DNA (in this cases complementary, cDNA) sequencing, could be more suitable than the application of microarrays. Recent papers have described the tremendous power of this technology, both in terms of profiling coverage and quantitative accuracy in transcriptomic studies. Now this technology is being applied to plant species, including Prunus. In this work, we analyze the potential in using this RNA-Seq technology in the study of Prunus transcriptomes and the development of genomic tools. In addition, the strengths and limitations of RNA-Seq relative to microarray profiling have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott AG, Sosinski B, Orellana A (2009) Functional genomics in peach. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, Heidelberg, pp 259–275

    Chapter  Google Scholar 

  • Aharoni A, Vorst O (2001) DNA microarray for functional plant genomics. Plan Mol Biol 48:99–118

    Article  Google Scholar 

  • Ando K, Grumet R (2010) Transcriptional profiling of rapidly growing cucumber fruit by 454-Pyrosequencing analysis. J Am Soc Hort Sci 135:291–302

    Google Scholar 

  • Arumuganathan K, Earle DE (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the rosaceae. Plant Breed Rev 27:175–211

    Google Scholar 

  • Arús P, Gradziel TM, Oliveira M, Tao R (2009) Genomics of almond. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, Heidelberg, pp 187–242

    Chapter  Google Scholar 

  • Auer PL, Doerge RW (2010) Statistical design and analysis of RNA-Seq data. Genetics 185:405–416

    Article  PubMed  CAS  Google Scholar 

  • Baird WV, Estager AS, Wells JK (1994) Estimating nuclear-DNA content in peach and related diploid species using laser flow-cytometry and DNA hybridization. J Amer Soc Hort Sci 119:1312–1316

    Google Scholar 

  • Balwierz PJ, Carninci P, Daub CO, Kawai J, Hayashizaki Y, Van Belle W, Beisel C, van Nimwegen E (2009) Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deep CAGE data. Genome Biol 10:R79

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Emrichm SJ, Chen HD, Li L, Schnable P (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  PubMed  CAS  Google Scholar 

  • Bashir A, Bansla V, Bafna V (2010) Designing deep sequencing experiments: detecting structural variation and estimating transcript abundance. BMC Genomics 11:385

    Article  PubMed  CAS  Google Scholar 

  • Basset CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrel RE (2009) Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230:107–118

    Article  CAS  Google Scholar 

  • Bellin D, Ferrarini A, Chimento A, Kaiser O, Levenkova N, Bouffard P, Delledonne M (2009) Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species. BMC Genomics 10:555

    Article  PubMed  CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach (Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Gen Develop 23:1379–1386

    Article  CAS  Google Scholar 

  • Bonghi C, Ferrarese L, Ruperti B, Tonutti P, Ramina A (1998) Endo-ß-1, 4-glucanases are involved in peach fruit growth and ripening, and regulated by ethylene. Physiol Plantarum 102:346–352

    Article  CAS  Google Scholar 

  • Bonghi C, Begheldo M, Ziliotto F, Rasori A, Trainotti L, Tosetti R, Tonutti P (2010) Transcriptome analyses and postharvest physiology of peaches and nectarines. Acta Hort 877:69–73

    Google Scholar 

  • Bradford JR, Hey Y, Yates T, Li YY, Pepper SD, Miller CJ (2010) A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. BMC Genomics 11:282

    Article  PubMed  CAS  Google Scholar 

  • Bräutigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol 12:831–841

    Article  PubMed  CAS  Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arús P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae conserved ortholog set (COS) of markers. BMC Genomics 10:562

    Article  PubMed  CAS  Google Scholar 

  • Chen CB, Farmer AD, Langley RJ, Mudge J, Crow J, May GD, Huntley J, Smith AG, Retzel EF (2010) Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocyted. BMC Plan Biol 10:280

    Article  CAS  Google Scholar 

  • Chepelev I, Wei G, Tang Q, Zao K (2009) Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 37:e106

    Article  PubMed  CAS  Google Scholar 

  • Chevalier T, Rigal D, Mbeguie-A-Mbeguie D (1999) Molecular cloning and characterization of apricot fruit polyphenol oxidase. Plant Physiol 119:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Clark TA, Sugnet CW, Ares MJ (2002) Genome wide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296:907–910

    Article  PubMed  CAS  Google Scholar 

  • Cloonan N, Grimmond SM (2010) Simplifying complexity. Nat Methods 7:793–794

    Article  PubMed  CAS  Google Scholar 

  • Costa V, Angelini C, De Feis I, Ciccodicol A (2010) Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotech. Article ID 853916

  • Croucher NJ, Fookes MC, Perkins TT, Turner DJ, Marguerat SB, Keane T, Quail MA, He M, Assefa S, Bahler J, Kingsley RA, Parkhill J, Bentley SD, Dougan G, Thomson NR (2009) A simple method for directional transcriptome sequencing using Illumina technology. Nucleic Acids Res 37:e148

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud T, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Gu L, Lu T, Lu F, Lu Z, Cui P, Pei Y, Wang B, Hu S, Cao X (2010) Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Nat Ac Sci USA 107:19114–19119

    Article  CAS  Google Scholar 

  • Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, Morgante M, Valle G, Wincker P, Scarpelli C, Jaillon O, Artiguenave F (2008) Annotating genomes with massive-scale RNA sequencing. Genome Biol 9:R175

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldré F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. P Natl Acad Sci USA 101:9891–9896

    Article  CAS  Google Scholar 

  • Dirlewanger E, Denoyes B, Yamamoto T, Chagné D (2009a) Genomics tools across Rosaceae species. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, Heidelberg, pp 539–561

    Chapter  Google Scholar 

  • Dirlewanger E, Claverie J, Iezzoni AF, Wünsch A (2009b) Sweet and sour cherries: linkage maps, QTL detection and marker assisted selection. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, Heidelberg, pp 291–313

    Chapter  Google Scholar 

  • Dondini L, Costa F, Tataranni G, Tataranni S, Sansavini S (2004) Cloning of apricot RGAs (resistance gene analogs) and development of molecular markers associated with Sharka (PPV) resistance. J Hort Sci Biotech 79:729–734

    CAS  Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2010) Molecular characterization of seven encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    Article  CAS  Google Scholar 

  • Esmenjaud D, Dirlewanger E (2007) Plum. In: Kole CR (ed) Genome mapping and molecular breeding. Fruits & nuts, vol 4. Springer, Heidelberg, pp 119–136

    Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  PubMed  CAS  Google Scholar 

  • Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Sakai H, Ware D, Jackson D (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    Article  PubMed  CAS  Google Scholar 

  • Falara V, Manganari GA, Ziliotto F, Manganaris A, Bonghi C, RaminaA, Kanellis AK (2011) A ß-D-xylosidase and a PR-4B precursor identified as genes in accounting for differences in peach cold storage tolerance. Funct Int Gen 11 (in press)

  • Falchi R, Cipriani G, Marrazzo T, Nonis A, Vizzotto G, Ruperti B (2010) Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening. J Exp Bot 61:2829–2842

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Liu H, Liu Y, Lu ZK, Guo GW, Guo SP, Zheng HW, Gao YN, Cheng SJ, Wang J, Zhang Y (2010) Power of deep sequencing and agilent microarray for gene expression profiling study. Mol Biotech 45:101–110

    Article  CAS  Google Scholar 

  • Fernández-Otero C, Matilla AJ, Rasori A, Ramina A, Bonghi C (2006) Regulation of ethylene biosynthesis in reproductive organs of damson plum (Prunus domestica L. Subsp Syriaca). Plant Science 171:74–83

    Google Scholar 

  • Fernández-Otero CI, Torre F, Iglesias R, Rodríguez-Gacio MC, Matilla AJ (2007) Stage- and tissue-expression of genes involved in the byosynthesis and signalling of ethylene in reproductive organs of damson plum. Plant Physiol Bioch 45:199–208

    Article  CAS  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen RK, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Gen Res 20:45–58

    Article  CAS  Google Scholar 

  • Flintoft L (2008) Transcriptomics: digging deep with RNA-Seq. Nat Rev Genet 9:413

    Google Scholar 

  • Folta KM, Gardiner SE (2009) Genomic-based opportunities in apricot. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, Heidelberg, pp 315–335

    Chapter  Google Scholar 

  • Forrest ARR, Carninci P (2009) Whole genome transcriptome analysis. RNA Biol 6:107–112

    Article  PubMed  CAS  Google Scholar 

  • Francis D (2010) Next generation sequencing of the tomato transcritpome. In: International horticulture conference, Lisboa (Portugal), p 10

  • Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li YX, Zeng R, Khaitovich P (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10:161

    Article  PubMed  CAS  Google Scholar 

  • Geuna F, Banfi R, Bassi D (2005) Identification and characterization of transcripts differentially expressed during development of apricot (Prunus armeniaca L.). Tree Genet Genomes 1:69–78

    Article  Google Scholar 

  • Gilad Y, Pritchard JK, Thornton K (2009) Characterizing natural variation using next-generation sequencing technologies. Trends Genet 25:463–471

    Article  PubMed  CAS  Google Scholar 

  • González-Agüero M, Pavez L, Ibanez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamales J, Silva H, Gonzalez M, Cambiazo V (2008) Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973–1986

    Article  PubMed  CAS  Google Scholar 

  • González-Agüero M, Troncoso S, Gudenschwager O, Campos-Vargas R, Moya-León MA, Defilippi BG (2009) Differential expression levels of aroma-related genes during ripening of apricot (Prunus armeniaca L.). Plant Physiol Bioch 47:435–440

    Article  CAS  Google Scholar 

  • Grimplet J, Romieu C, Audergon JM, Marty I, Albagnac G, Lambert P, Bouchet JP, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca L.) ripening among 13, 006 expressed sequence tags. Physiol Plant 125:281–292

    Article  Google Scholar 

  • Haas BJ, Zody MC (2010) Advancing RNA-Seq analysis. Nat Biotech 28:421–423

    Article  CAS  Google Scholar 

  • Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486

    PubMed  CAS  Google Scholar 

  • Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, de Menezes RX, Boer JM, van Ommen GJB, den Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:e141

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu YS, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    Article  PubMed  Google Scholar 

  • Horner DS, Pavesi G, Castrignano T, De Meo PD, Liuni S, Sammeth M, Picardi E, Pesole G (2010) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Briefs Bioinform 11:181–197

    Article  CAS  Google Scholar 

  • Illa E, Sargeant DJ, Lopez E, Bushara J, Cestaro A, Pindo M, Cabrera A, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9

    Article  PubMed  Google Scholar 

  • Jiang YQ, Ma RC (2003) Generation and analysis of expressed sequence tags from almond (Prunus dulcis Mill.) pistils. Sex Plant Rep 16:197–207

    Article  CAS  Google Scholar 

  • Jiménez S, Li ZG, Reighard GL, Bielenberg DG (2010a) Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol 10:25

    Article  PubMed  CAS  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010b) Gene expression of DAM 5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break. Plant Mol Biol 73:157–167

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinform 5:130

    Article  CAS  Google Scholar 

  • Jung S, Jiwan D, Cho I, Abbott A, Tomkins J, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76

    Article  PubMed  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGA) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Merelli I, Barale F, Milanesi L, Stella A, Pozzi C (2008) Version VI of the ESTree db: an improved tool for peach transcriptome analysis. BMC Bioinform 9:S9

    Article  CAS  Google Scholar 

  • Le Dantec L, Cardinet G, Bonet J, Fouché M, Boudehri K, Monfort A, Poëssel JL, Moing A, Dirlewanger E (2010) Development and mapping of peach candidate genes involved in fruit quality and their transferability and potential use in other Rosaceae species. Tree Genet Genomes 6:995–1012

    Article  Google Scholar 

  • Leader DJ (2005) Transcriptional analysis and functional genomics in wheat. J Cereal Sci 41:149–163

    Article  CAS  Google Scholar 

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Article  PubMed  CAS  Google Scholar 

  • Levin J, Adiconis X, Yassour M, Thompson D, Guttman M, Berger M, Fan L, Friedman N, Nusbaum C, Gnirke A, Regev A (2010) Development and evaluation of RNA-Seq methods. Genome Biol 11:P26

    Google Scholar 

  • Li H, Homer N (2010) A survey of sequence alignment algorithms for next generation sequencing. Briefs Bioinform 11:473–483

    Article  CAS  Google Scholar 

  • Li ZG, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  PubMed  CAS  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta L, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell T (2010) The developmental dynamics of the maize leaf transcriptmome. Nat Genet 42:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Linnarsson S (2010) Recent advances in DNA sequencing methods-general principles of sample preparation. Exp Res 316:1339–1343

    Article  CAS  Google Scholar 

  • Lu TT, Lu GJ, Fan DL, Zhu CR, Li W, Zhao QA, Feng Q, Zhao Y, Guo YL, Li WJ, Huang XH, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-Seq. Genet Res 20:1238–1249

    CAS  Google Scholar 

  • Manganaris GA, Ziosi V, Bonghi C, Costa G, Tonutti P, Ramina A (2010) A preliminary transcriptomic approach to elucidate postharvest ripening of plum fruit. Acta Hort 874:99–106

    CAS  Google Scholar 

  • Manganaris GA, Rasori A, Bassi D, Geuna F, Ramina A, Tonutti P, Bonghi C (2011) Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genet Genomes 7 (in press)

  • Marandel G, Pascal T, Candresse T, Decroocq V (2009) Quantitative resistance to Plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425–435

    Article  CAS  Google Scholar 

  • Marguerat S, Bähler J (2010) RNA-Seq: from technology to biology. Cell Mol Life Sci 67:569–579

    Article  PubMed  CAS  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Bruno VM, Fang ZD, Meng XD, Blow M, Zhang T, Sherlock G, Snyder M, Wang Z (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 11:663

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Gómez P, Sánchez-Pérez R, Dicenta F, Howad W, Arús P, Gradziel TM (2007) Almonds. In: Kole CR (ed) Genome mapping and molecular breeding. Fruits & nuts, vol 4. Springer, Heidelberg, pp 229–242

    Google Scholar 

  • Mbéguié D, Chahine H, Gomez RM, Gouble B, Reich M, Audergon J-M, Souty M, Albagnac G, Fils-Lycaon B (1999) Molecular cloning and expression of a cDNA encoding 1-aminocyclopropane-1-carboxylate (ACC) oxidase from apricot fruit (Prunus armeniaca). Physiol Plant 105:294–303

    Article  Google Scholar 

  • Mbéguié D, Gouble B, Gomez RM, Audergon J-M, Albagnac G, Fils-Lycaon B (2002) Two expansion cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene. Plant Physiol Bioch 40:445–452

    Article  Google Scholar 

  • Meneses C, Jung S, Arús P, Aranzana MJ, Abbott A (2007) In silico analysis and first applications of SNPs from the GDR database in peach. In: XII EUCARPIA fruit section symposium, Zaragoza (Spain), p 67

  • Montgomery SB, Dermitzakis ET (2009) The resolution of the genetics of gene expression. Hum Mol Genet 18:R211–R215

    Article  PubMed  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Prot Mol Biol, 4.11.1–4.11.13

  • Ogundiwin EA, Peace C, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto C (2008a) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet Genomes 4:543–554

    Article  Google Scholar 

  • Ogundiwin EA, Marti C, Forment J, Pons C, Granell A, Gradziel TM, Peace C, Crisosto C (2008b) Development of ChillPeah genomic tools and identification of cold-responsive genes in peach fruits. Plant Mol Biol 68:379–397

    Article  PubMed  CAS  Google Scholar 

  • Ogundiwin EA, Peace C, Gradziel TM, Bliss FA, Parfitt D, Crisosto C (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587

    Article  PubMed  CAS  Google Scholar 

  • Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123

    Article  PubMed  CAS  Google Scholar 

  • Pasquer F, Frey B, Frey E (2008) Identification of cherry incompatibility alleles by microarray. Plant Breed 127:413–417

    Article  CAS  Google Scholar 

  • Paszkiewicz K, Studholme DJ (2010) De novo assembly of short sequence reads. Briefs Bioinform 11:457–472

    Article  CAS  Google Scholar 

  • Peace C, Norelli JL (2009) Genomics approaches to crop breeding improvement in Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, Heidelberg, pp 19–53

    Chapter  Google Scholar 

  • Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-Seq studies. Nat Methods 6:S22–S32

    Article  PubMed  CAS  Google Scholar 

  • Picardi E, Horner DS, Chiara M, Valle G, Pesole G (2010) Large-scale detection and analysis of RNA editing in grape mtRNA by RNA deep-sequencing. Nucleic Acids Res 38:4755–4767

    Article  PubMed  CAS  Google Scholar 

  • Pina A, Staton M, Zhebentyayeva T, Mockaitis K, Errea P, Abbott A (2010) Studying the molecular mechanisms of graft incompatibility in Prunus using 454 sequencing. 5th International Rosaceae genomics conference. November 2010. Stellenbosch (South Africa), O39

  • Pozzi C, Vecchietti A (2009) Peach structural genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, Heidelberg, pp 235–257

    Chapter  Google Scholar 

  • Priest HD, Fox SE, Filichkin SA, Mockler TC (2010) Utility of next-generation sequencing for analysis of horticultural crop transcriptomes. Acta Hort 859:283–288

    Google Scholar 

  • Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A (2002) Characterisation of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53:2333–2339

    Article  PubMed  CAS  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R et al (2010) De novo assembly and analysis of RNA-Seq data. Nat Methods 7:909–912

    Article  PubMed  CAS  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-Seq data. Genome Biol 11:R25

    Article  PubMed  CAS  Google Scholar 

  • Rubio M, Rodríguez-Moreno L, Martínez-Gómez P (2010) Gene expression analysis of resistance to Plum pox virus, “Sharka”, in apricot by transcriptome deep-sequencing (RNA-Seq). 5th International Rosaceae genomics conference. November 2010. Stellenbosch (South Africa), p 38

  • Rubio-Cabetas MJ, Amador ML, Pons C, Marti C, Granell A (2010) A microarray analysis revealed and oxidative response genes underlying the differential response to hypoxia of two Prunus genotypes. 5th International Rosaceae genomics conference. November 2010. Stellenbosch (South Africa), O42

  • Ruperti B, Bonghi C, Tonutti P, Ramina A (1998) Ethylene biosynthesis in peach fruitlet abscission. Plant Cell Environ 21:731–737

    Article  CAS  Google Scholar 

  • Ruperti B, Bonghi C, Rasori A, Ramina A, Tonutti P (2001) Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiol Plant 111:336–344

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Sánchez-Pérez R, Howad W, García-Mas J, Arús P, Martínez-Gómez P, Dicenta F (2010) Molecular markers for kernel bitterness in almond. Tree Genet Genomes 6:237–247

    Article  Google Scholar 

  • Santos AM, Oliver MJ, Sanchez AM, Payton PR, Gomes JP, Miguel C, Oliveira MM (2009) An integrated strategy to identify key genes in almond adventitious shoot regeneration. J Exp Bot 60:4159–4173

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Gardiner SE, Potter D, Veilleux E (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  PubMed  CAS  Google Scholar 

  • Silva C, Garcia Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond: the candidate gene approach. Theor Appl Genet 110:959–968

    Article  PubMed  CAS  Google Scholar 

  • Sooknanan R, Pease J, Doyle K (2010) Novel methods for rRNA removal and directional, ligation-free RNA-Seq library preparation. Nat Methods 7:I–II

    Google Scholar 

  • Sooriyapathirana SS, Khan A, Sebolt AM, Wang DC, Bushakra JM, Lin-Wang K, Allan AC, Gardiner SE, Chagne D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832

    Article  Google Scholar 

  • Soriano JM, Vilanova S, Romero C, Llácer G, Badenes ML (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot. Theor Appl Genet 110:980–989

    Article  PubMed  CAS  Google Scholar 

  • Sosinski B, Verde I, Morgante M, Rokhsar D (2010) The international peach genome initiative. A first draft of the peach genome sequence and its use for genetic diversity analysis in peach. 5th International Rosaceae genomics conference. November 2010. Stellenbosch (South Africa), O46

  • Suelves M, Puigdomenech P (1998) Molecular cloning of the cDNA coding for the (R)-(+)-mandelonitrile lyase of Prunus amygdalus: temporal and spatial expression patterns in flowers and mature seeds. Planta 206:388–393

    Article  PubMed  CAS  Google Scholar 

  • Sultan M, Schulz MH, Richard H, Magen M, Scherf M, Borodina T, Soldatov A, Parkhomchuk D (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960

    Article  PubMed  CAS  Google Scholar 

  • Surget-Groba Y, Montoya-Burgos JI (2010) Optimization of de novo transcriptome assembly from next-generation sequencing data. Genet Res 20:1432–1440

    CAS  Google Scholar 

  • Tittarelli A, Santiago M, Morales A, Meisel LA, Silva H (2009) Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biol 7:513

    Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed  Google Scholar 

  • Trainotti L, Zanin D, Casadoro G (2003) A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. J Exp Bot 54:1821–1832

    Article  PubMed  CAS  Google Scholar 

  • Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray μPEACH1.0 to investigate transcriptome changes during transition from preclimacteric to climacteric phase in peach fruit. Plant Sci 170:606–613

    Article  CAS  Google Scholar 

  • Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308

    Article  PubMed  CAS  Google Scholar 

  • van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most ‘dark matter’ transcripts are associated with known genes. PLoS Biol 8:e1000371

    Article  PubMed  CAS  Google Scholar 

  • Vecchietti A, Lazzari B, Ortugno C, Bianchi F, Malinverdi R, Carprear A, Mignani I, Pozzi C (2009) Comparative analysis of expressed sequence tags from tissues in ripening stages of peach. Tree Genet Genomes 5:377–391

    Article  Google Scholar 

  • Vega-Arreguín JC, Ibarra-Laclette E, Martínez O, Vielle Cazalda P, Herrera-Estrella L, Herrera-Estrella A (2009) Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing. BMC Genomics 10:299

    Article  PubMed  CAS  Google Scholar 

  • Vendramin E, Dettori MT, Giovinazzi J, Mical S, Quarte R, Verde I (2007) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes 7:307–310

    Article  CAS  Google Scholar 

  • Vivancos A, Güell M, Dohm JC, Serrano L, Himmelbauer H (2010) Strand-specific deep sequencing of the transcriptome. Genet Res 20:989–999

    CAS  Google Scholar 

  • Vizoso P, Meisel LA, Lee A, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 10:423

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomic. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Li PH, Brutnell TP, Thomas P (2010a) Exploring plant transcriptomes using ultra high-throughput sequencing. Briefs Funct Gen 9:118–128

    Article  CAS  Google Scholar 

  • Wang X, Wang XW, Wang LK, Feng ZX, Zhang XG (2010b) A review on the processing and analysis of next generation RNA-Seq data. Prog Biochem Bioph 37:834–846

    Article  Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010c) DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data. Bioinformatics 26:136–138

    Article  PubMed  CAS  Google Scholar 

  • Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequecing. Plant Physiol 144:32–42

    Article  PubMed  CAS  Google Scholar 

  • Werner T (2010) Next generation sequencing in functional genomics. Briefs Bioinform 11:499–511

    Article  CAS  Google Scholar 

  • Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-Sequencing. Methods 48:249–257

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm BT, Marguerat S, Goodhead I, Bähler J (2010) Defining transcribed regions using RNA-Seq. Nat Protoc 5:255–266

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger M, Difazio TD (2003) Emerging use of gene expression microarrays in plant physiology. Comp Funt Gen 4:216–224

    Article  CAS  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi IZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–302

    Article  CAS  Google Scholar 

  • Yazaki J, Gregory BD, Ecker JR (2007) Mapping the genome landscape using tiling array technology. Curr Opin Plant Biol 10:534–542

    Article  PubMed  CAS  Google Scholar 

  • Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152:1787–1795

    Article  PubMed  CAS  Google Scholar 

  • Zhang GJ, Guo GW, Hu XD, Zhang Y, Li QY, Li RQ, Zhuang RH, Lu ZK, He ZQ, Fang XD, Chen L, Tian W, Tao Y, Kristiansen K, Zhang XQ, Li SG, Yang HM, Wang J, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genet Res 20:646–654

    CAS  Google Scholar 

  • Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest A, Blackmon B, Horn R, Howad W, Arús P, Main D, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008) A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes 4:745–756

    Article  Google Scholar 

  • Zhebentyayeva T, Fan S, Olukolu B, Barakat A, Leida C, Badenes ML, Bielenberg D, Reighard G, Okie W, Abbott AG (2010) From genetics to epigenetics in control of chilling requirements and flowering time in peach. 5th International Rosaceae genomics conference. November 2010. Stellenbosch (South Africa), O54

  • Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781–2791

    Article  PubMed  CAS  Google Scholar 

  • Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S, Kondo S, Costa G, Torrigiani P (2008) Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. J Exp Bot 59:563–573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by the projects “Importance, transmission and resistance sources in the main viruses affecting stone fruits in the Region of Murcia” (08672/PI/08) of the Seneca Foundation of the Region of Murcia and “Gene expression analysis of the resistance to Plum pox virus, PPV (Sharka) in apricot by transcriptome deep-sequencing (RNA-Seq)” of the Spanish Ministry of Science and Innovation (Project reference AGL2010-16335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Martínez-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Gómez, P., Crisosto, C.H., Bonghi, C. et al. New approaches to Prunus transcriptome analysis. Genetica 139, 755–769 (2011). https://doi.org/10.1007/s10709-011-9580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9580-2

Keywords

Navigation