Skip to main content
Log in

Ploidy dependent expression of apomixis and its components in guinea grass (Panicum maximum Jacq.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Panicum maximum (guinea grass) is a model crop for apomixis and polyploidy studies. It is predominantly tetraploid (2n = 32) and is characterized by gametophytic apomixis, Panicum-type apospory and pseudogamous endosperm development. The three components of apomixis, viz. apomeiosis, parthenogenesis and functional endosperm development, can be uncoupled in this crop. An exhaustive single progenitor-derived ploidy series comprising of 32 accessions representing 3x, 4x, 5x, 6x, 7x, 8x, 9x and 11x cytotypes was utilized in present study to understand ploidy effects on expression of apospory as well on uncoupled components in two phases of progeny formation i.e. in matured ovules (using embryo-sac analysis) and in matured self-pollinated seeds (using Flow Cytometric Seed Screen method). Rise in ploidy enhanced the formation of sexual embryo-sacs (ES) thereby increasing the frequency of facultative accessions at higher ploidy level. Our results suggested that the eventual phenotype depends on relative doses of apospory and sexual factors in the genome. Ploidy level was also found affecting the penetrance and expressivity of uncoupled apomixis components. Formation of BIII hybrids (3n) appeared to be more stabilised and less affected by the ploidy change, however, formation of M1 (1n) progenies increased with the rise in ploidy. Ploidy effects on traits such as occurrence of multiple ES, autonomous endosperm development, and twin embryos were also studied. Flexibility of guinea grass to tolerate excessive genome burden and successful formation of seeds overcoming endosperm balance number and endosperm imprinting constraints is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aliyu OM, Schranz ME, Sharbel TF (2010) Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae). Am J Bot 97:1719–1731

    Article  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–241

    Article  CAS  Google Scholar 

  • Asker SE (1967) Induced sexuality after chromosome doubling in an apomictic Potentilla argentea biotype. Hereditas 57:339–342

    Article  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Bicknell R, Catanach A (2015) Apomixis: the asexual formation of seed. In: Li XQ, Donnelly D, Jensen TG (eds) Somatic genome manipulation. Springer, New York, pp 147–167

    Chapter  Google Scholar 

  • Bicknell RA, Koltunow A (2004) Understanding apomixis, recent advances and remaining conundrums. Plant Cell 16:S228–S245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Bicknell RA, Lamb SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138:11–20

    Article  CAS  PubMed  Google Scholar 

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia 41:1255–1264

    Article  Google Scholar 

  • Burson BL, Hussey MA, Actkinson JM, Shafer GS (2002) Effect of pollination time on the frequency of 2n + n fertilization in apomictic buffel grass. Crop Sci 42:1075–1080

    Article  Google Scholar 

  • Calzada J-PV, Crane CF, Stelly DM (1996) Apomixis: the asexual revolution. Science 274:1322–1323

    Article  CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Chapman H, Houliston GJ, Robson B, Iline I (2003) A case of reversal: the evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. Int J Plant Sci 164:719–728

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  Google Scholar 

  • Combes D (1975) Polymorphisme et mode de reproduction dans la section des Maximae du genre Panicum (Graminees) en Afrique. Coll Menoires ORSTOM, Paris 77:1–100

    Google Scholar 

  • Combes D, Pernes J (1970) Variations dans les nombres chromosomiques du Panicum maximum Jacq. En relation avec le mode de reproduction. C R Acad Sci Paris Ser D 270:782–785

    Google Scholar 

  • Conner JA, Ozias-Akins P (2017) Apomixis: engineering the ability to harness hybrid vigor in crop plants. Methods Mol Biol 1669:17–34

    Article  PubMed  CAS  Google Scholar 

  • Cosendi A-C, Horandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470

    Article  Google Scholar 

  • Curtis MD, Grossniklaus U (2008) Molecular control of autonomous embryo and endosperm development. Sex Plant Reprod 21:79–88

    Article  Google Scholar 

  • Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, Cambridge

    Google Scholar 

  • de Sousa ACB, Jank L, de Campos T, Sforça DA, Zucchi MI, de Souza AP (2011) Molecular diversity and genetic structure of guinea grass. (Panicum maximum Jacq.), a tropical pasture grass. Trop Plant Biol 4:185

    Article  CAS  Google Scholar 

  • de Wet JMJ (1968) Diploid–tetraploid–haploid cycles and the origin of variability in Dichanthium agamospecies. Evolution 22:394–397

    Article  PubMed  Google Scholar 

  • Delgado L, Galdeano F, Sartor ME, Quarin CL, Espinoza F, Ortiz JPA (2014) Analysis of variation for apomictic reproduction in diploid Paspalum rufum. Ann Bot 113:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado L, Sartor ME, Espinosa F, Soliman M, Galdeano F, Ortiz JPA (2016) Hybridity and autopolyploidy increase the expressivity of apospory in diploid Paspalum rufum. Plant Syst Evol 302:1471–1481

    Article  Google Scholar 

  • Depetris MB, Acuna CA, Pozzi FI, Quarin CL, Felitti SA (2018) Identification of genes related to endosperm balance number insensitivity in Paspalum notatum. Crop Sci 58:813–822

    Article  Google Scholar 

  • Dobes C, Scheffknecht S, Fenko Y, Prohaska D, Sykora C, Huelber K (2017) Asymmetric reproductive interference: the consequences of cross-pollination on reproductive success in sexual-apomictic populations of Potentilla puberosa (Rosaceae). Ecology and Evolution 8:365–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Dujardin M, Hanna WW (1986) An apomictic polyhaploid obtained from a pearl millet x Pennisetum squamulatum apomictic interspecific hybrid. Theor Appl Genet 72:33–36

    Article  CAS  PubMed  Google Scholar 

  • Ebina M, Nakagawa H, Yamamoto T, Araya H, Tsuruta S, Takahara M, Nakajima K (2005) Co-segregation of AFLP and RAPD markers to apospory in guinea grass (Panicum maximum Jacq.). Jpn Soc Grassl Sci 51:71–78

    Article  CAS  Google Scholar 

  • Friedman WE, Williams JH (2004) Developmental evolution of the sexual process in ancient flowering plant lineages. Plant Cell 16:S119–S132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Satyaki PR (2017) Endosperm and imprinting, inextricably linked. Plant Physiol 173:143–154

    Article  CAS  PubMed  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Grimanelli D, Hernandez M, Perotti E, Savidan Y (1997) Dosage effects in the endosperm of diplosporous apomictic Tripsacum (Poaceae). Sex Plant Reprod 10:279–282

    Article  Google Scholar 

  • Gustafsson A (1946) Apomixis in higher plants. Lunds Universitets Arsskrift N F II 42:1–67

    Google Scholar 

  • Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans Biol Sci 333:1–13

    Article  Google Scholar 

  • Hand ML, Koltunow AMG (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hand ML, Vit P, Krahulcova A, Johnson SD, Oelkers K, Siddons H, Chrtek J Jr, Fehrer J, Koltunow AMG (2015) Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Heredity 114:17–26

    Article  CAS  PubMed  Google Scholar 

  • Hands P, Rabiger DS, Koltunow AMG (2016) Mechanisms of endosperm initiation. Plant Reprod 29:215–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson ST, Johnson SD, Eichmann J, Koltunow AMG (2017) Genetic analyses of the inheritance and expressivity of autonomous endosperm formation in Hieracium with different modes of embryo sac and seed formation. Ann Bot 119:1001–1010

    PubMed  PubMed Central  Google Scholar 

  • Hojsgaard D, Klatt S, Baier R, Carman JG, Horandl E (2014a) Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit Rev Plant Sci 33:414–427

    Article  PubMed  Google Scholar 

  • Hojsgaard DH, Greilhuber J, Pellino M, Paun O, Sharbel TF, Horandl E (2014b) Emergence of apospory and bypass of meiosis via apomixis after sexual hybridization and polyploidization. New Phytol 204:1000–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Horandl E, Hojsgaard D (2012) The evolution of apomixis in angiosperms: a reappraisal. Plant Biosyst 146:681–693

    Google Scholar 

  • Horandl E, Temsch E (2009) Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex. Ann Bot 104:81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Huh JH, Bauer MJ, Hsieh T, Fischer RL (2007) Endosperm gene imprinting and seed development. Curr Opin Genet Dev 17:480–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Zadoo SN, Roy AK, Kaushal P, Malaviya DR (2003) Meiotic system and probable basic chromosome number of Panicum maximum Jacq. accessions. Cytologia 68:7–13

    Article  Google Scholar 

  • Jain A, Roy AK, Kaushal P, Malaviya DR, Zadoo SN (2006) Isoenzyme banding pattern and estimation of genetic diversity among guinea grass germplasm. Genet Resour Crop Evol 53:339–347

    Article  CAS  Google Scholar 

  • Kaushal P, Malaviya DR, Singh KK (1999) Evaluation of exotic accessions of guinea grass (Panicum maximum Jacq.). Indian J Plant Genet Resour 12:215–218

    Google Scholar 

  • Kaushal P, Malaviya DR, Roy AK, Pathak S, Agrawal A, Khare A, Siddiqui SA (2008) Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components. Euphytica 164:81–92

    Article  Google Scholar 

  • Kaushal P, Agrawal A, Malaviya DR, Siddiqui SA, Roy AK (2009) Ploidy manipulation in guinea grass (Panicum maximum Jacq., Poaceae) utilizing a hybridization-supplemented apomixis-components partitioning approach (HAPA). Plant Breed 128:295–303

    Article  Google Scholar 

  • Kaushal P, Khare A, Siddiqui SA, Agrawal A, Paul S, Malaviya DR, Roy AK, Zadoo SN (2010) Morphological, cytological and reproductive characterization of tri-species hybrids (GOS) between Pennisetum glaucum, P. orientale and P. squamulatum. Euphytica 174:261–281

    Article  Google Scholar 

  • Kaushal P, Paul S, Saxena S, Dwivedi KK, Chakraborti M, Radhakrishna A, Roy AK, Malaviya DR (2015) Generating higher ploidies (7x and 11x) in guinea grass (Panicum maximum Jacq.) utilizing reproductive diversity and uncoupled apomixis components. Curr Sci 109:1392–1395

    Google Scholar 

  • Klatt S, Schinkel CCF, Kirchheimer Dullinger S, Horandl E (2018) Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculuc kuepferi (Ranunculaceae). Ann Bot 121:1287–1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodahl N, Johansen BB, Rasmussen FN (2015) The embryo sac of Vanilla imperialis (Orchidaceae) is six nucleate, and double fertilization and formation of endosperm are not observed. Bot J Linn Soc 177:202–213

    Article  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis, a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Johnson SD, Bicknell RA (1998) Sexual and apomictic development in Hieracium. Sex Plant Reprod 11:213–230

    Article  Google Scholar 

  • Koltunow AMG, Johnson SD, Rodrigues JCM, Okada T, Hu Y, Tsuchiya T, Wilson S, Fletcher P, Ito K, Suzuki G, Mukai Y, Fehrer J, Bicknell RA (2011) Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant J 66:890–902

    Article  CAS  PubMed  Google Scholar 

  • Krahulcova A, Rotreklova O (2010) Use of flow cytometry in research on apomictic plants. Preslia 82:23–39

    Google Scholar 

  • Krahulcova A, Krahulec F, Rosenbaumova R (2011) Expressivity of apomixis in 2n + n hybrids from an apomictic and a sexual parent: insights into variation detected in Pilosella (Asteraceae: lactuceae). Sex Plant Reprod 24:63–74

    Article  PubMed  Google Scholar 

  • Krahulec F, Krahulcova A, Rosenbaumova R, Plackova I (2011) Production of polyhaploids by facultatively apomictic Pilosella can result in the formation of new genotypes via genome doubling. Preslia 83:471–490

    Google Scholar 

  • Li S, Zhou B, Peng X, Kuang Q, Huang X, Yao J, Du B, Sun M-X (2014) OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. New Phytol 201:66–79

    Article  CAS  PubMed  Google Scholar 

  • Lovell JT, Olawale MA, Martin M, Schranz ME, Koch M, Kiefer C, Song B-H, Mitchell-Olds Y, Sharbel TF (2013) On the origin and evolution of apomixis in Boechera. Plant Reprod 26:309–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Matzk F, Prodanovic S, Baumlein H, Schubert I (2005) The inheritance of apomixis in Poa pratensis confirms a five- locus model with differences in gene expressivity and penetrance. Plant Cell 17:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mecchia MA, Ochogavia A, Selva JP, Laspina N, Felitti S, Martelloto LG, Spangenberg G, Echenique V, Pessino SC (2007) Genome polymorphisms and gene differential expression in a ‘back-and-forth’ ploidy altered series of weeping lovegrass (Eragrotis curvula). J Plant Physiol 164:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Hanna WW (1990) Morphology, origin and cytogenetics of a 48-chromosome Panicum maximum. Cytologia 55:471–474

    Article  Google Scholar 

  • Nakajima K, Mochizuki N (1983) Degrees of sexuality in sexual plants of guinea grass by the simplified embryo sac analysis. Jp J Breed 33:45–54

    Article  Google Scholar 

  • Nassar NMA (2006) Chromosome doubling induces apomixis in a cassava × Manihot anomala hybrid. Hereditas 143:246–248

    Article  PubMed  Google Scholar 

  • Nogler GA (1984a) Gametophytic apomixis. In: Johri BM (ed) Embryology of angioperms. Springer, Berlin, pp 475–518

    Chapter  Google Scholar 

  • Nogler GA (1984b) Genetics of apospory in apomictic Ranunculus auricomus V. Conclusion. Botanica Helvetica 94:411–422

    Google Scholar 

  • Noyes RD (2005) Inheritance of apomeiosis (diplospory) in fleabanes (Erigeron, Asteraceae). Heredity 94:193–198

    Article  CAS  PubMed  Google Scholar 

  • Noyes RD, Wagner JD (2014) Dihaploidy yields diploid apomicts and parthenogens in Erigeron (Asteraceae). Am J Bot 101:865–874

    Article  PubMed  Google Scholar 

  • Ortiz JPA, Quarin CL, Pessino SC, Acuna C, Martinez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Caceres ME, Pupilli F (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot 112:767–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Pupilli F, Barcaccia G (2012) Cloning plants by seeds: inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. J Biotechnol 159:291–311

    Article  CAS  PubMed  Google Scholar 

  • Quarin CL (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex Plant Reprod 11:331–335

    Article  Google Scholar 

  • Quarin CL, Hanna WW (1980) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75

    Article  Google Scholar 

  • Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249

    Article  Google Scholar 

  • Roche D, Hanna WW, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349

    Article  Google Scholar 

  • Rodrigo JM, Zappacosta DC, Selva JP, Garbus I, Albertini E, Eechenique V (2017) Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula). PLoS ONE 12:e0175852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutishauser A (1948) Pseudogamie und polymorphie in der gattung Potentilla. Arch Julius Stiftung 23:267–424

    Google Scholar 

  • Sartor ME, Quarin CL, Urbani MH, Espinoza F (2011) Ploidy levels and reproductive behaviour in natural populations of five Paspalum species. Plant Syst Evol 293:31–41

    Article  Google Scholar 

  • Savidan Y (1980) Chromosomal and embryological analyses in sexual x apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet 57:153–156

    Article  Google Scholar 

  • Savidan Y (2000) Apomixis, genetics and breeding. Plant Breed Rev 18:13–85

    CAS  Google Scholar 

  • Savidan Y, Pernes J (1982) Diploid-tetraploid-dihaploid cycles and the evolution of Panicum maximum Jacq. Evolution 36:596–600

    PubMed  Google Scholar 

  • Scheffknecht S, Hulber K, Prohaska D, Milosevic A, Sharbel TF, Dobes CH (2013) Reproductive differentiation into sexual and apomictic polyploid races in Potentilla puberula (Potentilleae, Rosaceae). In: Kroh A, Berning B, Haring E, et al (eds) BioSyst.EU 2013. Global systematics! 2nd BioSyst. EU joint meeting. 18–22 Feb 2013, Vienna, Austria. NOBIS Austria, Vienna, pp 183–184

  • Schinkel CCF, Kirchheimer B, Dellinger AS, Klatt S, Winkler M, Dullinger S, Horandl E (2016) Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB Plants 8:plw064. https://doi.org/10.1093/aobpla/plw064

    Article  PubMed  PubMed Central  Google Scholar 

  • Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, Storme ND, Horandl E (2017) Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Syst Evol 303:1093–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharbel TF, Voigt M-L, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B (2009) Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J 58:870–882

    Article  CAS  PubMed  Google Scholar 

  • Sharbel TF, Voigt M-L, Corral JM, Galla G, Kumlehn J, Klukas Ch, Schreiber F, Vogel H, Rotter B (2010) Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell 22:655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siena LA, Sartor ME, Espinoza F, Quarin CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex Plant Reprod 21:205–215

    Article  CAS  Google Scholar 

  • Siena LA, Ortiz JPA, Calderini O, Paolocci F, Caceres ME, Kaushal P, Grisan S, Pessino SC, Pupilli F (2016) An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. J Exp Bot 67:1965–1978

    Article  CAS  PubMed  Google Scholar 

  • Sokolov VA, Tarakanova TK, Abdyrakhmanova EA (2008) The third international conference on apomixis. Russ J Genet 44:1367–1375

    Article  CAS  Google Scholar 

  • Taliaferro CM, Bashaw EC (1966) Inheritance and control of obligate apomixis in breeding buffelgrass, Pennisetum ciliare. Crop Sci 6:473–476

    Article  Google Scholar 

  • Verduijn MH, Van Dijk PJ, Van Damme JM (2004) The role of tetraploids in the sexual-asexual cycle in dandelions (Taraxacum). Heredity 93:390–398

    Article  CAS  PubMed  Google Scholar 

  • Vinkenoog R, Scott RJ (2001) Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? Sex Plant Reprod 14:189–194

    Article  CAS  PubMed  Google Scholar 

  • Vinkenoog R, Spielman M, Adams S, Fischer RL, Dickinson HG, Scott RJ (2000) Hypomethylation promotes autonomous endosperm development and rescues post-fertilization lethality in fie mutants. Plant Cell 12:2271–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser NC, Spies JJ (1994) Cytogenetic studies in the genus Tribolium (Poaceae: Danthonieae). II. A report on embryo sac development, with special reference to the occurrence of apomixis in diploid specimens. S Afr J Bot 60:22–26

    Article  Google Scholar 

  • Voigt-Zielinski ML, Piwczynski M, Sharbel TF (2012) Differential effects of polyploidy and diploidy on fitness of apomictic Boechera. Sex Plant Reprod 25:97–109

    Article  PubMed  Google Scholar 

  • Warmke HE (1954) Apomixis in Panicum maximum. Am J Bot 41:5–11

    Article  Google Scholar 

  • Worthington M, Heffelfinger C, Bernal D, Quintero C, Zapata YP, Perez JG, Vega JD, Miles J, Dellaporta S, Tohme J (2016) A parthenogenesis gene candidate and evidence for segmental alloployploidy in apomictic Brachiaria decumbens. Genetics 203:1117–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672

    Article  Google Scholar 

  • Zavesky L, Jarolimova V, Stepanek J (2007) Apomixis in Taraxacum paludosum (section Palustria, Asteraceae), Recombinations of apomixis elements in inter-sectional crosses. Plant Syst Evol 265:147–163

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial assistance provided by the Department of Science and Technology, New Delhi, India (Grant: SR/S0/PS-117/2010). Authors are also thankful to Dr W. W. Hanna, USDA, for sharing sexual tetraploid accession (SPM 92) and the two anonymous reviewers for their critical comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PK, AKR, MJB and DRM planned the experiment; PK, KKD, AR, SS, SP, MKS generated and analysed data; PK, AKR, MJB and DRM interpreted data and wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to P. Kaushal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, P., Dwivedi, K.K., Radhakrishna, A. et al. Ploidy dependent expression of apomixis and its components in guinea grass (Panicum maximum Jacq.). Euphytica 214, 152 (2018). https://doi.org/10.1007/s10681-018-2232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2232-1

Keywords

Navigation