Skip to main content
Log in

Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

One hundred and sixty accessions representing global germplasm of guinea grass (Panicum maximum Jacq.), an important apomictic (aposporous) fodder crop, were subjected to study on reproductive diversity in apomictic seed development utilizing ovule clearing and flow cytometric seed screen (FCSS). Single seed FCSS of selected 14 tetraploid and five hexaploid lines demonstrated uncoupling between the three apomixis components, viz. apomeiosis, parthenogenesis and functional endosperm development, in natural as well as experimental populations, though it differed across ploidy levels and genotypes. Reconstruction of reproductive pathways yielded a total of eight different pathways of seed development, arising by uncoupling/recombination between apomixis components. Amongst these, two pathways involving modifications in embryo-sac (ES) (presence of two polar nuclei in aposporous ES that fuse prior to fertilization) and fertilization process (fusion of only one polar nucleus in a sexual ES) have been reported for the first time. Some of the combinations, such as MI (haploids arising from parthenogenetic development of reduced egg cell), were found viable only in hexaploid background. Germplasm lines with higher expression of individual components were also identified. These components (including autonomous endosperm development) were also experimentally partitioned in hexaploid progenies (derived from a tetraploid parent viz. accession IG 04-164) that showed segregation in their reproductive capacities, and are reported for the first time. Occurrence of several apomixis recombinants (phenotypic) in guinea grass lines suggested their hybrid origin, favors a multigene model for apomixis, with their penetrance affected by modifiers and epigenetic mechanisms, in contrast to earlier reports of single locus control. Implications of partitioning components on apomixis research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Romano B, Falcinelli M (2001) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217

    Article  Google Scholar 

  • Anonymous (2007) Apomixis—guinea grass. Annual report 2006–2007. Indian Grassland and Fodder Research Institute, Jhansi, India

  • Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchin M (2006) Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96:322–334

    Article  PubMed  CAS  Google Scholar 

  • Bicknell RA, Koltunow A (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245

    Article  PubMed  CAS  Google Scholar 

  • Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138:11–20

    Article  PubMed  CAS  Google Scholar 

  • Burson BL, Hussey MA, Actkinson JM, Shafer GS (2002) Effect of pollination time on the frequency of 2n + n fertilization in apomictic buffelgrass. Crop Sci 42:1075–1080

    Article  Google Scholar 

  • Chen LZ, Kozono T (1994a) Cytological evidence of seed-forming embryo development in polyembryonic ovules of facultatively apomictic guinea grass (Panicum maximum Jacq.). Cytologia 59:351–359

    Google Scholar 

  • Chen LZ, Kozono T (1994b) Cytology and quantitative analysis of aposporous embryo sac development in guinea grass. Cytologia 59:253–260

    Google Scholar 

  • Combes D (1975) Polymorphisme et mode de reproduction dans la section des Maximae du genre Panicum (Graminees) en Afrique. Coll Menoires ORSTOM, Paris 77:1–100

    Google Scholar 

  • de Wet JMJ (1968) Diploid-tetraploid-haploid cycles and the origin of variability in Dicanthium agamospecies. Evolution 22:394–397

    Article  Google Scholar 

  • Dujardin M, Hanna WW (1986) An apomictic polyhaploid obtained from a pearl millet × Pennisetum squamulatum apomictic interspecific hybrid. Theor Appl Genet 72:33–36

    Article  Google Scholar 

  • Ebina M, Nakagawa H, Yamamoto T, Araya H, Tsuruta S, Takahara M, Nakajima K (2005) Co-segregation of AFLP and RAPD markers to apospory in guinea grass (Panicum maximum Jacq.). Japan Soc Grassl Sci 51:71–78

    Article  CAS  Google Scholar 

  • Grimanelli D, Harnandez M, Perotti E, Savidan Y (1997) Dosage effects in the endosperm of diplosporous apomict Tripsacum (Poaceae). Sex Plant Reprod 10:279–282

    Article  Google Scholar 

  • Jain A, Zadoo SN, Roy AK, Kaushal P, Malaviya DR (2003) Meiotic system and probable basic chromosome number of Panicum maximum Jacq. accessions. Cytologia 68:7–13

    Article  Google Scholar 

  • Jain A, Roy AK, Kaushal P, Malaviya DR, Zadoo SN (2006) Isozyme banding pattern and estimation of genetic diversity among guinea grass germplasm. Genet Resour Crop Evol 53:339–347

    Article  CAS  Google Scholar 

  • Kaushal P, Malaviya DR, Singh KK (1999) Evaluation of exotic accessions of guinea grass (Panicum maximum Jacq.). Ind J Plant Genet Resour 12:215–218

    Google Scholar 

  • Kaushal P, Malaviya DR, Roy AK (2004) Prospects for breeding apomictic rice: a reassessment. Curr Sci 87:292–296

    CAS  Google Scholar 

  • Kaushal P, Roy AK, Khare A, Malaviya DR, Zadoo SN, Choubey RN (2007) Crossability and characterization of interspecific hybrids between sexual Pennisetum glaucum (pearl millet) and a new cytotype (2n = 56) of apomictic P. squamulatum. Cytologia 72:111–118

    Article  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Johnson SD, Bicknell RA (2000) Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex Plant Reprod 12:253–266

    Article  Google Scholar 

  • Malaviya DR (1998) Evaluation of Panicum maximum lines for sustained productivity. Range Manage Agroforestry 19:126–132

    Google Scholar 

  • Malaviya DR, Kaushal P (2005) IGFRI Guinea grass germplasm catalogue. Indian Grassland and Fodder Research Institute, Jhansi, pp 26

    Google Scholar 

  • Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2007) Genome rearrangements derived from autopolyploidization in Paspalum sp. Plant Sci 172:970–977

    Article  CAS  Google Scholar 

  • Matzk F (1991) A novel approach to differentiated embryos in the absence of endosperm. Sex Plant Reprod 4:88–94

    Article  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  PubMed  CAS  Google Scholar 

  • Matzk F, Meister A, Brutovska R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282

    Article  PubMed  CAS  Google Scholar 

  • Matzk F, Prodanovic S, Baumlein H, Schubert I (2005) The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. Plant Cell 17:13–24

    Article  PubMed  CAS  Google Scholar 

  • Mecchia MA, Ochogavia A, Selva JP, Laspina N, Felitti S, Martelloto LG, Spangenberg G, Echenique V, Pessino SC (2007) Genome polymorphisms and gene differential expression in a ‘back-and-forth’ ploidy altered series of weeping lovegrass (Eragrotis curvula). J Plant Physiol 164:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Morgan RN, Ozias-Akins P, Hanna WW (1998) Seed set in an apomictic BC3 pearl millet. Int J Plant Sci 159:87–89

    Article  Google Scholar 

  • Nakagawa H, Hanna WW (1990) Morphology, origin and cytogenetics of a 48-chromosome Panicum maximum. Cytologia 55:471–474

    Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angioperms. Springer, Berlin, pp 475–518

    Google Scholar 

  • Noyes RD (2005) Inheritance of apomeiosis (diplospory) in fleabanes (Erigeron, Asteraceae). Heredity 94:193–198

    Article  PubMed  CAS  Google Scholar 

  • Noyes RD (2006) Apomixis via recombination in genome regions for apomeiosis (diplospory) and parthenogenesis in Erigeron. Sex Plant Reprod 19:7–18

    Article  CAS  Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annus. Genetics 155:379–390

    PubMed  CAS  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Ozias-Akins P, vanDijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537

    Article  PubMed  CAS  Google Scholar 

  • Reddy PS, d’Cruz R (1969) Mechanism of apomixis in Dicanthium annulatum (Forskk) Stapf. Bot Gaz 130:71–79

    Article  Google Scholar 

  • Roche D, Hanna W, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349

    Article  Google Scholar 

  • Rodrigues JCM, Koltunow AMG (2005) Epigenetic aspects of sexual and asexual seed development. Acta Biol Cracoviensia Ser Bot 47:37–49

    Google Scholar 

  • Rutihauser A (1948) Pseudogamie und polymorphie in der gattung Potentilla. Arch Julius Stiftung 23:267–424

    Google Scholar 

  • Savidan Y (1980) Chromosomal and embryological analyses in sexual × apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet 57:153–156

    Article  Google Scholar 

  • Savidan Y (1981) Genetics and utilization of apomixis for the improvement of guinea grass (Panicum maximum Jacq.) In: Proc XIV Intl Grassl Congr, Lexington, pp 182–184

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–85

    CAS  Google Scholar 

  • Savidan Y, Pernes J (1982) Diploid-tetraploid-dihaploid cycles and the evolution of Panicum maximum Jacq. Evolution 36:596–600

    Article  Google Scholar 

  • Savidan YH, Jank L, Costa LCG, doValle CB (1989) Breeding Panicum maximum in Brazil. 1. Genetic resources, modes of reproduction and breeding procedures. Euphytica 41:107–112

    Article  Google Scholar 

  • Schranz ME, Kantama L, de Jong H, Mitchell-Olds T (2006) Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol 171:425–438

    Article  PubMed  Google Scholar 

  • vanDijk PJ, van Baarlen P, deJong H (2003) The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sex Plant Reprod 16:71–76

    Article  Google Scholar 

  • Warmke HE (1954) Apomixis in Panicum maximum. Am J Bot 41:5–11

    Article  Google Scholar 

  • Wieners RR, Fei S, Johnson RC (2006) Characterization of a USDA Kentucky bluegrass (Poa pratensis L.) core collection for reproductive mode and DNA content by flow cytometry. Genet Resour Crop Evol 53:1531–1541

    Article  Google Scholar 

  • Yao J-L, Zhou Y, Hu C-G (2007) Apomixis in Eulaliopsis binata: characterization of reproductive mode and endosperm development. Sex Plant Reprod 20:151–158

    Article  Google Scholar 

  • Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672

    Article  Google Scholar 

  • Zavesky L, Jarolimova V, Stepanek J (2007) Apomixis in Taraxacum paludosum (section Palustria, Asteraceae): recombinations of apomixis elements in inter-sectional crosses. Plant Syst Evol 265:147–163

    Article  Google Scholar 

Download references

Acknowledgements

Germplasm lines from various sources are thankfully acknowledged. Support by Department of Science and Technology (DST-Fast Track Scheme-Grant SR/L-93/2003) and by Indian Council of Agricultural Research, India, (AP Cess Scheme-Grant 3030522031) is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kaushal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, P., Malaviya, D.R., Roy, A.K. et al. Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components. Euphytica 164, 81–92 (2008). https://doi.org/10.1007/s10681-008-9650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9650-4

Keywords

Navigation