Skip to main content
Log in

Ploidy levels and reproductive behaviour in natural populations of five Paspalum species

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Knowledge of variation in ploidy levels and reproductive behaviour in natural populations is essential in order to understand the functioning of agamic complexes. The aim of this study was to analyse the ploidy level and mode of reproduction in several wild Paspalum populations. A total of 19 populations representing five different species (P. alcalinum, P. denticulatum, P. lividum, P. nicorae, and P. rufum) were collected. Ploidy level was determined in 1,187 individuals by using flow cytometry. Among these individuals, 2x, 3x, 4x, 5x, 6x, and 7x chromosome constitutions were observed. Diploid sexual cytotypes of P. denticulatum were detected for the first time; this will allow the development of future breeding strategies for this particular species. Flow cytometry seed screen (FCSS) in bulked and single seeds revealed the reproductive diversity of these species, ranging from complete sexuality in diploids and varying levels of facultative apomixis in most tetraploids, to obligate apomixis in pentaploids and hexaploids. A fully sexual tetraploid plant was never detected. Nevertheless, most tetraploid genotypes produced both maternal (by apomixis) and non-maternal (by sexuality) progeny. This residual sexuality is very interesting from an evolutionary point of view, since it would allow the creation of new genotypic combinations in natural populations. In addition, the residual sexuality found in some apomictic tetraploid populations can be used as a source of variability for genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC, Boca Raton

  • Bashaw EC, Hovin AW, Holt EC (1970) Apomixis, its evolutionary significance and utilization in plant breeding. In: Norman MJT (ed) In: Proceedings of eleventh international Grasslands congress. University of Queensland Press, St Lucia, pp 245–248

  • Bennett HW, Bashaw EC (1966) Interspecific hybridization with Paspalum spp. Crop Sci 6:52–58

    Article  Google Scholar 

  • Bretagnolle F, Lumaret R (1995) Bilateral polyploidization in Dactylis glomerata L-subsp. Lusitanica—occurrence, morphological and genetic characteristics of first polyploids. Euphytica 84:197–207

    Article  Google Scholar 

  • Burson BL (1975) Cytology of some apomictic Paspalum species. Crop Sci 15:229–232

    Article  Google Scholar 

  • Burson BL (1983) Phylogenetic investigations of Paspalum dilatatum and related species. In: Smith JA, Hays VW (eds) Proceedings of the 14th International Grassland Congress. Westview, Boulder, pp 170–173

  • Burson BL (1991) Genome relationships between tetraploid and hexaploid biotypes of dallisgrass Paspalum dilatatum. Bot Gaz 152:219–223

    Article  Google Scholar 

  • Burson BL (1997) Apomixis and sexuality in some Paspalum species. Crop Sci 37:1347–1351

    Article  Google Scholar 

  • Burson BL, Bennett HW (1970) Cytology, method of reproduction, and fertility of Brunswickgrass, Paspalum nicorae Parodi. Crop Sci 10:184–187

    Article  Google Scholar 

  • Burson BL, Bennett HW (1971) Chromosome numbers, microsporogenesis, and mode of reproduction of seven Paspalum species. Crop Sci 11:292–294

    Article  Google Scholar 

  • Burton GW (1940) A cytological study of some species in the genus Paspalum. J Agric Res 60:193–197

    Google Scholar 

  • Burton GW, Forbes I Jr (1960) The genetics and manipulation of obligate apomixis in common bahiagrass (Paspalum notatum Flugge). In: Proceedings of eighth international Grassl congress, pp 66–71

  • Caceres ME, Pupilli F, Quarin CL, Arcioni S (1999) Feulgen densitometry of embryo sacs permits discrimination between sexual and apomictic plants in Paspalum simplex. Euphytica 110:161–167

    Article  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Chase A (1929) The North American species of Paspalum. Contr US Natl Herb 28:1–310

    Google Scholar 

  • Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199

    Article  CAS  Google Scholar 

  • Davidse G, Pohl RW (1972) Chromosome numbers, meiotic behavior and notes on some grasses from Central America and the West Indies. Can J Bot 50:1441–1452

    Article  Google Scholar 

  • de Wet JMJ (1980) Origins of polyploids. In: Grant WF (ed) Plant biosystematics. Academic, Toronto, pp 3–15

    Google Scholar 

  • Denham SS, Morrone O, Zuloaga FO (2010) Estudios en el género Paspalum (Poaceae, Panicoideae, Paniceae): Paspalum denticulatum y especies afines. Ann Missouri Bot Gard 97:11–33

    Article  Google Scholar 

  • Ernst A (1918) Bastardierung als Ursache der Apogamie im Pflanzenreich. Fischer, Jena

    Google Scholar 

  • Felber F (1991) Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J Evol Biol 4:195–207

    Article  Google Scholar 

  • Gould FW (1958) Chromosome numbers in southwestern grasses. Am J Bot 45:757–767

    Article  Google Scholar 

  • Gould FW (1968) Chromosome numbers of Texas grasses. Can J Bot 47:315–1325

    Google Scholar 

  • Hojsgaard D, Schegg E, Valls JFM, Martínez EJ, Quarin CL (2008) Sexuality, apomixis, ploidy levels, and genomic relationships among four Paspalum species of the subgenus Anachyris (Poaceae). Flora 203:535–547

    Google Scholar 

  • Hojsgaard D, Honfi AI, Rua G, Daviña J (2009) Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). Genet Resour Crop Evol 56:533–545

    Article  Google Scholar 

  • Holm S, Ghatnekar L (1996) Apomixis and sexuality in hexaploid Potentilla argentea. Hereditas 125:53–60

    Article  Google Scholar 

  • Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials and ecology. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner, Ruggell, pp 169–154

  • Martínez EJ, Urbani MH, Quarin CL, Ortiz JP (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25

    Article  PubMed  Google Scholar 

  • Martínez EJ, Hopp HE, Stein J, Ortiz JP, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327

    Article  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  PubMed  CAS  Google Scholar 

  • Moraes Fernandes MIB, Barreto De I, Salzano FM, Sacchet AMOF (1974) Cytologycal and evolutionary relationships in Brazilian forms of Paspalum (Gramineae). Caryologia 27:455–465

    Google Scholar 

  • Ndikumana J (1985) Etude de l’hybridation entre espèces apomictiques et sexuéesdans le genre Brachiaria. Ph.D. Thesis. Université Catholique de Louvain, Louvain-la-Neuve, Belgium, p 210

  • Nogler GA (1975) Genetics of apospory in Ranunculus auricomus. IV. Embriology of F3 and F4 backcross offspring. Phytomorphology 25:485–490

    Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518

    Google Scholar 

  • Norrmann GA, Quarin CL, Burson BL (1989) Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Hered 80:24–28

    Google Scholar 

  • Norrmann GA, Bovo OA, Quarin CL (1994) Post-zigotic seed abortion in sexual diploid ×  apomictic tetraploid intraspecific Paspalum crosses. Aust J Bot 42:449–456

    Article  Google Scholar 

  • Noyes RD (2006) Apomixis via recombination of genome regions for apomeiosis (diplospory) and parthenogenesis in Erigeron (daisy fleabane, Asteraceae). Sex Plant Reprod 19:7–18

    Article  CAS  Google Scholar 

  • Noyes RD, Riesenberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    PubMed  CAS  Google Scholar 

  • Pagliarini MS, Carraro LR, Freitas PM, Adamowski EV, Batista LAR, Valls JFM (2001) Cytogenetic characterization of Brazilian Paspalum accessions. Hereditas 135:27–34

    Article  PubMed  CAS  Google Scholar 

  • Pupilli F, Cáceres ME, Quarin CL, Arcioni S (1997) Segregation analysis of RFLP markers reveals a tetrasomic inheritance in apomictic Paspalum simplex. Genome 40:822–828

    Article  PubMed  CAS  Google Scholar 

  • Quarin CL (1977) Recuentos cromosómicos in Gramineae de Argentina subtropical. Hickenia 1:73–78

    Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in panicoid grasses. Apomixis Newsl 5:8–15

    Google Scholar 

  • Quarin CL (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex Plant Reprod 11:331–335

    Article  Google Scholar 

  • Quarin CL, Burson BL (1991) Cytology of sexual and apomictic Paspalum species. Cytologia 56:223–228

    Google Scholar 

  • Quarin CL, Hanna WW (1980) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75

    Article  Google Scholar 

  • Quarin CL, Lombardo EP (1986) Niveles de ploidía y distribución geográfica de Paspalum quadrifarium (Gramineae). Mendeliana 7:101–107

    Google Scholar 

  • Quarin C, Norrmann G, Urbani M (1989) Polyploidization in aposporous Paspalum species. Apomixis Newsl 1:28–29

    Google Scholar 

  • Quarin CL, Espinoza F, Martínez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 3:243–249

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Reeder JR (1967) Notes on Mexican grasses VI. Miscellaneous chromosome numbers. Bull Torrey Bot Club 94:1–17

    Article  Google Scholar 

  • Reis CAO, Schifino-Wittmann MT, Dall′Agnol M (2008) Cytogenetic characterization of a collection of Paspalum nicorae Parodi accessions. Crop Breed Appl Biotechnol 8:212–218

    Google Scholar 

  • Reis CAO, Dall’Agnol M, Nabinger C, Schifino-Wittmann MT (2010) Morphological variation in Paspalum nicorae accessions. Sci Agric 67:143–150

    Article  Google Scholar 

  • Sartor ME, Quarin CL, Espinoza F (2009) Mode of reproduction of colchicine-induced Paspalum plicatulum tetraploids. Crop Sci 49:1270–1276

    Article  CAS  Google Scholar 

  • Saura F (1948) Cariología de gramíneas en Argentina. Rev Fac de Agron y Vet Inst Genet (U. Buenos Aires) 12:51–67

    Google Scholar 

  • Savidan Y (1975) Hérédité de l’apomixie. Contribution à l’etude de l’hérédité de l’apomixie sur Panicum maximun Jacq (analyse des sacs embryonnaires)—Cah ORSTOM, sér. Biology 10:91–95

    Google Scholar 

  • Siena LA, Sartor ME, Espinoza F, Quarin CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex Plant Reprod 21:205–215

    Article  CAS  Google Scholar 

  • Snyder LA (1953) Breeding and evaluation of forage grasses. Grass Cytol Report Fed Exp Sta Mayaguez, PR, p 18

  • Stebbins GL (1941) Apomixis in the angiosperms. Bot Rev 7:507–542

    Article  Google Scholar 

  • Stein J, Quarin CL, Martínez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191

    Article  PubMed  CAS  Google Scholar 

  • Stein J, Pessino SC, Martínez EJ, Rodriguez MP, Siena L, Quarin CL, Ortiz JP (2007) A genetic map of tetraploid Paspalum notatum Flügge (bahiagrass) based on single-dose molecular markers. Mol Breed 20:153–166

    Article  CAS  Google Scholar 

  • Tucker MR, Koltunow AM (2009) Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relatioships. Funct Plant Biol 36:490–504

    Article  Google Scholar 

  • Urbani MU, Quarin CL, Espinoza F, Penteado MIO, Rodrigues IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236:99–105

    Article  Google Scholar 

  • Valle do CB, Glienke C, Leguizamon GOC (1994) Inheritance of apomixis in Brachiaria, a tropical forage grass. Apomixis Newsl 7:42–43

    Google Scholar 

  • Woodell SRJ, Valentine DH (1961) Studies in British primulas. IX. Seed incompatibility in diploid-autotetraploid crosses. New Phytol 60:282–294

    Article  Google Scholar 

  • Zuloaga FO, Morrone O (2005) Revisión de las especies de Paspalum para América del Sur Austral (Argentina, Bolivia, sur de Brasil, Chile, Paraguay y Uruguay). Monogr Syst Bot Missouri Bot Gard 102:1–297

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Silvina Pessino, Prof. Michael Hayward and Prof. Emeritus Henry Fribourg for critically reading the manuscript and for English assistance. We also thank Florencia Galdeano who managed the flow cytometer. This study was financed by the Agencia Nacional de Promoción Científica y Tecnológica [ANPCyT], Argentina, PICT 2007 No. 00476; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, PIP 2008 No. 6805 and PIP 112-200801-01378. M.E.S. received fellowships from CONICET. C.L.Q. and F.E. are career members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Espinoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartor, M.E., Quarin, C.L., Urbani, M.H. et al. Ploidy levels and reproductive behaviour in natural populations of five Paspalum species. Plant Syst Evol 293, 31–41 (2011). https://doi.org/10.1007/s00606-011-0416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0416-4

Keywords

Navigation