Skip to main content
Log in

Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Gametophytic apomixis is an asexual mode of reproduction by seeds. This trait is present in several plant families and is strongly associated with polyploidy. Paspalum rufum is a forage grass with sexual self-incompatible diploids (2n = 2x = 20) and aposporous-apomictic pseudogamous tetraploids (2n = 4x = 40). In previous work embryological observations of the diploid genotype Q3754 showed 8.8–26.8% of the ovaries having one meiotic plus an aposporous-like embryo sac, suggesting some capability for apomictic reproduction. The objective of this work was to characterize progenies derived from Q3754 to determine if aposporous sacs were functional and generated progenies via apomixis at the diploid level. Re-examination of Q3754 ovaries showed that 12.5% of them contained one sexual plus an aposporous sac confirming previous results. Progeny tests were carried out on two experimental families (H1 and S1) employing heterozygous RAPD marker loci. Family H1 was obtained crossing Q3754 with a natural diploid genotype (Q3861) and S1 derived from the induced self-pollination of Q3754. Genetic analysis of H1 showed that all individuals derived from sexual reproduction. However, 5 out of 95 plants from S1 showed the same heterozygous state as the mother plant for 14 RAPD loci suggesting a clonal origin. Further experiments, designed to test the functionality of aposporous sacs by flow cytometric analyses, were carried out on a third family (M1) obtained by crossing Q3754 with the tetraploid plant Q3785. Histograms of 20 M1 plants showed 15 diploids (75%), 4 triploids (20%) and 1 tetraploid (5%). Triploids and the tetraploid may have originated from functional aposporous embryo sacs. Likewise, the reconstruction of the developmental route of 40 individual seeds demonstrated that 11 of them (27.5%) derived from fertilized aposporic sacs. The results presented in this work indicate that gametophytic apomixis is effectively expressed at the diploid level in Paspalum rufum and could be the foundation of a recurrent auto-polyploidization process in the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asker S (1970) Apomixis and sexuality in the Potentilla argentea complex. II Crosses within the complex. Hereditas 66:189–204

    Article  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC, Boca Raton

    Google Scholar 

  • Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138:11–20

    Article  PubMed  CAS  Google Scholar 

  • Böcher TW (1951) Cytological and embryological studies in the amphi-apomictic Arabis holboellii complex. Kongel Danske Vidensk Selskab Biol Skr 6:159

    Google Scholar 

  • Burson BL (1992) Cytology and reproductive behavior of hybrids between Paspalum urvillei and two hexaploid Paspalum dilatatum biotypes. Genome 35(6):1002–1006

    Google Scholar 

  • Burton GW, Hanna WW (1986) Bahiagrass tetraploids produced by making (apomictic tetraploid × diploid) × diploid hybrids. Crop Sci 26:1254–1256

    Google Scholar 

  • Burton GW, Hanna WW (1992) Using apomictic tetraploids to make a self-incompatible diploid Pensacola bahiagrass clone set seed. J Hered 83:305–306

    Google Scholar 

  • Darlington CD (1939) Evolution of genetic systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Daurelio DL, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199

    Article  CAS  Google Scholar 

  • de Wet JMJ, Stalker HT (1974) Gametophytic apomixis and evolution in plants. Taxon 23:689–697

    Article  Google Scholar 

  • Espinoza F, Pessino SC, Quarin CL, Valle EM (2002) Effect of pollination timing on the rate of apomictic reproduction revealed by RAPD markers. Ann Bot 89:165–170

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR, Brooks MH, Borgaonkar DS, de Wet JMJ (1964) Nature and inheritance of apomixis in Bothriochloa and Dichanthium. Bot Gaz 125:41–46

    Article  Google Scholar 

  • Holm S, Ghatnekar L (1996) Sexuality and no apomixis found in crossing experiments with diploid Potentilla argentea. Hereditas 125:77–82

    Article  Google Scholar 

  • Holm S, Ghatnekar L, Bengtsson BO (1997) Selfing and outcrossing but no apomixis in two natural populations of diploid Potentilla argentea. J Evol Biol 10:343–352

    Article  Google Scholar 

  • Kantama L, Lambert Y, Hu H, de Jong H, de Vries SC, Russinova E (2006) Use of the SSLP-based method for detection of rare apomictic events in a sexual AtSERK1 transgenic Arabidopsis population. Sex Plant Reprod 19:73–82

    Article  Google Scholar 

  • Kantama L, Sharbel TF, Schranz ME, Mitchell-Olds T, de Vries S, de Jong H (2007) Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104:14026–14031

    Article  PubMed  CAS  Google Scholar 

  • Marshall DR, Brown AHD (1974) Estimation of the level of apomixis in plant populations. Heredity 32:321–333

    Article  Google Scholar 

  • Martínez EJ, Hopp E, Stein J, Ortiz JPA, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327

    Article  Google Scholar 

  • Mather K (1951) The measurement of linkage in heredity, 2nd edn. Methuen and Co., London

    Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  PubMed  CAS  Google Scholar 

  • Müntzing A, Müntzing G (1945) The mode of reproduction of hybrids between sexual and apomictic Potentilla argentea. Bot Notiser 98:49–71

    Google Scholar 

  • Naumova TN, Hayward MD, Wagenvoort M (1999) Apomixis and sexuality in diploid and tetraploid accessions of Brachiaria decumbens. Sex Plant Reprod 12:43–52

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518

    Google Scholar 

  • Norrmann GA, Quarin CL, Burson BL (1989) Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Hered 80:24–28

    Google Scholar 

  • Norrmann GA, Bovo OA, Quarin CL (1994) Post-zygotic seed abortion in sexual diploid × apomictic tetraploid intraspecific Paspalum crosses. Aust J Bot 42:449–456

    Article  Google Scholar 

  • Ortiz JPA, Pessino SC, Leblanc O, Hayward MD, Quarin CL (1997) Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass. Theor Appl Genet 95:850–856

    Article  CAS  Google Scholar 

  • Ortiz JPA, Pessino SC, Bhat V, Hayward MD, Quarin CL (2001) A genetic linkage map of diploid Paspalum notatum. Crop Sci 41:823–830

    CAS  Google Scholar 

  • Pupilli F, Caceres ME, Quarín CL, Arcioni S (1997) Segregation analysis of RFLP markers reveals a tetrasomic inheritance in apomictic Paspalum simplex. Genome 40:822–828

    Article  PubMed  CAS  Google Scholar 

  • Quarin CL (1986) Seasonal changes in the incidence of apomixis of diploid and tetraploid plants of Paspalum cromyrrhizon. Euphytica 35:515–522

    Article  Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in panicoid grasses. Apomixis Newsl 5:8–15

    Google Scholar 

  • Quarin CL (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex Plant Reprod 11:331–335

    Article  Google Scholar 

  • Quarin CL, Lombardo EP (1986) Niveles de ploidía y distribución geográfica de Paspalum quadrifarium (Gramineae). Mendeliana 7:101–107

    Google Scholar 

  • Quarin CL, Norrmann GA (1987) Cytology and reproductive behavior of Paspalum equitans, P. ionanthum and their hybrids with diploid and tetraploid cytotypes of P. cromyorrhizon. Bot Gaz 148:386–391

    Article  Google Scholar 

  • Quarin CL, Norrmann GA, Urbani MH (1989) Polyploidization in aposporous Paspalum species. Apomixis Newsl 1:28–29

    Google Scholar 

  • Quarin CL, Norrmann GA, Espinoza F (1998) Evidence for autoploidy in apomictic Paspalum rufum. Hereditas 129:119–124

    Article  Google Scholar 

  • Quarin CL, Espinoza F, Martínez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. In: Janick J (ed) Plant breeding reviews, vol 18. Wiley, London, pp 13–86

    Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stein J, Quarin CL, Martínez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191

    Article  PubMed  CAS  Google Scholar 

  • Urbani MH, Quarin CL, Espinoza F, Penteado MIO, Rodríguez IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236:99–105

    Article  Google Scholar 

  • Yamauchi A, Hosokawa A, Nagata H, Shimoda M (2004) Triploid bridge and role of parthenogenesis in evolution of autopolyploidy. Am Nat 164:101–111

    Article  PubMed  Google Scholar 

  • Zuloaga FO, Morrone O (2005) Revisión de las especies de Paspalum para América del Sur Austral (Argentina, Bolivia, Sur de Brasil, Chile, Paraguay y Uruguay). In: Hollowell VC (ed). Missouri Botanical Garden Press, St Luis

Download references

Acknowledgments

The authors wish to thank Dr Silvina Pessino and Prof. Michael Hayward for critically reading the manuscript. They also thank Florencia Galdeano for her technical assistance. This study was financed by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, PICT 2003 No. 13578 and PAV 2003 No. 137/3; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, PIP 2004 No. 6805. Centro Argentino Brasilero de Biotecnología (CABBIO 2004 No. 012). L. Siena and M. Sartor received fellowships from CONICET and F. Espinoza, C.L. Quarin and J.P.A. Ortiz are career members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. A. Ortiz.

Additional information

Communicated by J.S. Heslop-Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siena, L.A., Sartor, M.E., Espinoza, F. et al. Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex Plant Reprod 21, 205–215 (2008). https://doi.org/10.1007/s00497-008-0080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-008-0080-1

Keywords

Navigation