Skip to main content
Log in

QTL mapping and genetic analysis for maize kernel size and weight in multi-environments

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Kernel size and weight are important agronomic traits, as well as crucial traits that influence grain yield in maize. In the present study, 150 F7 recombinant inbred lines derived from a cross 178×K12 were evaluated for kernel length (KL), kernel width (KW), kernel thickness (KT), and 100-kernel weight (HKW) across seven environments. Natural variations in KL, KW, KT, and HKW were observed in the population. A set of quantitative trait loci (QTLs) for the kernel-related traits were identified by inclusive composite interval mapping method. For the four kernel traits from seven environments and the best linear unbiased prediction data, a total of 52 QTLs were detected, which distributed on all chromosomes except chromosome 6. The LOD values ranged from 2.52 to 8.91, the additive effect from − 2.22 to 1.37, and the range of individually explaining phenotypic variation was from 5.8 to 23.49%. Amongst these QTLs, most were detected only in one or two environments. Three stable QTLs, qKL4-1 at bin 4.07/4.08, qKW4-2 at bin 4.06 and qKT2-1 at bin 2.02/2.03, were identified across at least three environments. Besides, several overlapping QTLs associated with multiple traits were identified. For example, qKW3-1 for KW and qHKW3-1 for HKW were located in the same marker interval at Bin 3.01/3.02. These stable QTLs and overlapping QTLs found in this study will contribute to the understanding of genetic components of grain yield and provide the foundation for molecular marker-assisted breeding in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

KL:

Kernel length

KW:

Kernel width

KT:

Kernel thickness

HKW:

100-Kernel weight

RIL:

Recombinant inbred line

QTLs:

Quantitative trait loci

ICIM:

Inclusive composite interval mapping

BLUP:

Best linear unbiased prediction

References

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breeding 19:341–356

    Article  Google Scholar 

  • Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  PubMed  CAS  Google Scholar 

  • Blummel M, Grings E, Erenstein O (2013) Potential for dual-purpose maize varieties to meet changing maize demands: synthesis. Field Crop Res 153:107–112

    Article  Google Scholar 

  • Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177:1801–1813

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang L, Liu S, Li Z, Huang R, Li Y, Cheng H, Li X, Zhou B, Wu S (2016) The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS ONE 11:e0153428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49:565–571

    Article  PubMed  Google Scholar 

  • Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125:671–683

    Article  PubMed  CAS  Google Scholar 

  • He KH, Chang LG, Cui TT, Qu JZ, Guo DW, Xu ST, Zhang XH, Zhang RH, Xue JQ, Liu JC (2016) Mapping QTL for plant height and ear height in maize under multi-environments. Sci Agric Sin 49:1443–1452

    CAS  Google Scholar 

  • Ho J, McCouch S, Smith M (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Ge M, Zhao H, Zhang T (2015) Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. PLoS ONE 10:e0124779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis 1. Crop Sci 25:192–194

    Article  Google Scholar 

  • Li C, Li Y, Sun B, Peng B, Liu C, Liu Z, Yang Z, Li Q, Tan W, Zhang Y (2013) Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica 193:303–316

    Article  CAS  Google Scholar 

  • Li H, Ye G, Wang J (2007a) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang Y, Shi Y, Song Y, Wang T, Li Y (2009) Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin 42:408–418

    CAS  Google Scholar 

  • Li YL, Niu SZ, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG (2007b) Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2: 3 population in popcorn. Theor Appl Genet 115:129–140

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Huang J, Guo H, Lan L, Wang H, Xu Y, Yang X, Li W, Tong H, Xiao Y (2017) The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol 175:774–785

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Ji HQ, Cui ZT, Wu X, Duan LJ, Feng XX, Tang JH (2011) QTL detected for grain-filling rate in maize using a RIL population. Mol Breeding 27:25–36

    Article  Google Scholar 

  • Lu GH, Tang JH, Yan JB, Ma XQ, Li JS, Chen SJ, Ma JC, Liu ZX, Zhang YR, Dai JR (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol 48:1233–1243

    Article  CAS  Google Scholar 

  • Lu M, Xie C-X, Li X-H, Hao Z-F, Li M-S, Weng J-F, Zhang D-G, Bai L, Zhang S-H (2011) Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breeding 28:143–152

    Article  CAS  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut J-M (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305–1320

    Article  PubMed  Google Scholar 

  • Prado SA, López CG, Senior ML, Borrás L (2014) The genetic architecture of maize (Zea mays L.) kernel weight determination. G3 Genes Genomes Genet 4:1611–1621

    Google Scholar 

  • Qin H, Cai Y, Liu Z, Wang G, Wang J, Guo Y, Wang H (2012) Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 187:345–358

    Article  CAS  Google Scholar 

  • Raihan MS, Liu J, Huang J, Guo H, Pan Q, Yan J (2016) Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58× SK maize population. Theor Appl Genet 129:1465–1477

    Article  PubMed  CAS  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupt V (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  PubMed  CAS  Google Scholar 

  • Revilla P, Butrón A, Malvar RA, Ordás RA (1999) Relationship among kernel weight, early vigor, and growth in maize. Crop Sci 39:654–658

    Article  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Shi Z, Song W, Xing J, Duan M, Wang F, Tian H, Xu L, Wang S, Su A, Li C (2017) Molecular mapping of quantitative trait loci for three kernel-related traits in maize using a double haploid population. Mol Breeding 37:108

    Article  CAS  Google Scholar 

  • Sun X-Y, Wu K, Zhao Y, Kong F-M, Han G-Z, Jiang H-M, Huang X-J, Li R-J, Wang H-G, Li S-S (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615

    Article  CAS  Google Scholar 

  • Utz HF (2001) PLABSTAT: a computer program for statistical analysis of plant breeding experiments. Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Institute for Plant Breeding

    Google Scholar 

  • Veldboom LR, Lee M (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci 36:1310–1319

    Article  CAS  Google Scholar 

  • Wang Y, Liu C, Wang TY, Shi YS, Song YC, Li Y (2007) QTL analysis of yield components in maize under different water regimes. J Plant Genet Resour 2:010

    Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CAB International, Wallingford

    Book  Google Scholar 

  • Xu Y, Li H-N, Li G-J, Wang X, Cheng L-G, Zhang Y-M (2011) Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet 122:581–594

    Article  PubMed  Google Scholar 

  • Yang C, Zhang L, Jia A, Rong T (2016) Identification of QTL for maize grain yield and kernel-related traits. J Genet 95:239–247

    Article  PubMed  Google Scholar 

  • Yang G, Dong Y, Li Y, Wang Q, Shi Q, Zhou Q (2013) Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize. PLoS ONE 8:e53770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z (2017) Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet 130:1011–1029

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Jin T, Huang Y, Chen J, Zhu L, Zhao Y, Guo J (2015) Identification of quantitative trait loci underlying the protein, oil and starch contents of maize in multiple environments. Euphytica 205:169–183

    Article  CAS  Google Scholar 

  • Zhang Z, Liu Z, Hu Y, Li W, Fu Z, Ding D, Li H, Qiao M, Tang J (2014) QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS ONE 9:e89645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the National Science Foundation of China (No. 31301830), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ3108), and Special Fund for Basic Research in Northwest A&F University (No. QN2012001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., He, K., Chang, L. et al. QTL mapping and genetic analysis for maize kernel size and weight in multi-environments. Euphytica 214, 119 (2018). https://doi.org/10.1007/s10681-018-2189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2189-0

Keywords

Navigation