Skip to main content
Log in

Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F2:3 lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F2:3 population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abler SB, Edwards MD, Stuber CW (1991) Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Sci 31:267–274

    Article  CAS  Google Scholar 

  • Allard RW (1996) Genetic basis of the evolution of adaptedness in plants. Euphytica 92:1–11

    Article  Google Scholar 

  • Ashman RB (1991) Registration of three popcorn (Maize) parental lines, HP62-02, HP72-11, and HP68-07. Crop Sci 31:1402

    Article  Google Scholar 

  • Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Austin DF, Lee M (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and non-stress environments. Crop Sci 38:1296–1308

    Article  CAS  Google Scholar 

  • Austin DF, Lee M, Veldboom LR, Hallauer AR (2000) Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci 40:30–39

    Article  Google Scholar 

  • Babu R, Nair SK, Kumar A, Rao HS, Verma P, Gahala A, Singh IS, Gupta HS (2006) Mapping QTLs for popping ability in a popcorn × flint corn cross. Theor Appl Genet 112:1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments. In: Proceedings of the 49th annual corn and Sorghum research conference, Washington, DC, pp 250–266

  • Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci. Theor Appl Genet 83:141–145

    Article  Google Scholar 

  • Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–892

    Article  Google Scholar 

  • Bernacchi D, Beck BT, Eshed Y, Lopez Y, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998a) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez Y, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley SD (1998b) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180, 1191–1196

    Google Scholar 

  • Brouwer DJ, St Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using nearisogenic lines (NILs) and sub-NILs. Theor Appl Genet 104:628–638

    Article  CAS  Google Scholar 

  • Bubeck DM, Goodman MM, Beavis WD, Grant D (1993) Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci 33:838–847

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crumbaker DE, Johnson IJ, Eldredge JC (1949) Inheritance of popping volume and associated characters in crosses between popcorn and dent corn. Agron J 41:207–212

    Article  Google Scholar 

  • Dofing SM, Thomas-Compton MA, Buck JS (1990) Genotype × popping method interaction for expansion volume in popcorn. Crop Sci 30:62–65

    Article  Google Scholar 

  • Dofing SM, D’Croz-Mason N, Thomas-Compton MA (1991) Inheritance of expansion volume and yield in two popcorn × dent corn crosses. Crop Sci 31:715–718

    Article  Google Scholar 

  • Duvick DN (1992) Genetic contributions to advances in yield of US maize. Maydica 37:69–79

    Google Scholar 

  • Edwards MD, Page NJ (1994) Evaluation of marker-assisted selection through computer simulation. Theor Appl Genet 88:376–382

    Article  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig D, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersion peruvinum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig D, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersion peruvinum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Gimelfarb A, Lande R (1994) Simulation of marker assisted selection in hybrid populations. Genet Res Camb 63:39–47

    CAS  Google Scholar 

  • Hallauer AR, Mirando FJB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Ho JC, McCouch SR, Smith ME (2002) Improvement of hybrid yield by advanced backcross yield analysis in elite maize. Theor Appl Genet 105:440–448

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Johnson IJ, Eldredge JC (1953) Performance of recovered popcorn inbred lines derived from outcrosses to dent corn. Agron J 45:105–110

    Article  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Koester RP, Sisco PH, Stuber CW (1993) Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci 33:1209–1216

    Article  Google Scholar 

  • Lan JH, Li XH, Gao SR, Zhang BS, Zahng SH (2005) QTL analysis of yield components in maize under different environments. Acta Agron Sin 31:1253–1259

    CAS  Google Scholar 

  • Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344

    Article  CAS  Google Scholar 

  • Li YL, Xue XM, Jin YS, Hu XA (1999) Preliminary results of the single-cross breeding in popcorn. Chin Agric Sci Bull 15:11–12

    CAS  Google Scholar 

  • Li YL, Lu ZJ (2000) Study on the expansion characteristics of the derived lines from popcorn × normal corn crosses. J Henan Agric Univ 34:210–212

    Google Scholar 

  • Li YL, Lu FY, Du ZW, Wu SW, Han CP (2002) Preliminary report on improvement result to popcorn using normal corn germplasm and backcross. Acta Agric Boreali Sin 17:37–43

    CAS  Google Scholar 

  • Li YL, Lu DB, Wu XJ, Dong YB (2005) The effect of successive selection on the self and backcrossing progenies from normal corn × popcorn crosses. Acta Agric Boreali Sin 20:12–16

    Google Scholar 

  • Li YL, Dong YB, Cui DQ, Niu SZ, Wang YZ, Yu YL (2006a) QTL Mapping of popping characteristics in popcorn using the model of trisomic inheritance in the endosperm. Sci Agric Sin 39:448–455

    CAS  Google Scholar 

  • Li YL, Dong YB, Niu SZ (2006b) QTL analysis of popping fold and the consistency of QTLs under two environments in popcorn. Acta Genet Sin 33:724–732

    Article  PubMed  Google Scholar 

  • Lu HJ, Bernardo R, Ohm HW (2003) Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers. Theor Appl Genet 106:423–427

    PubMed  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Moreno-Gonzalez J (1993) Efficiency on generations for estimating marker-associated QTL effects by multiple regression. Genetics 135:223–231

    PubMed  CAS  Google Scholar 

  • Niu SZ (2006) Advanced backcross QTL analysis and its application in genetics and breeding in popcorn. MS D Thesis. Henan Agricultural University, Zhengzhou, Henan, China

  • Phillips RL, Kim TS, Kaeppler SM, Parentoni SN, Shaver DL, Stucker RE, Openshaw SJ (1992) Genetic dissection of maturity using RFLPs. In: Proceedings of the 47th annual corn and Sorghum research conference, ASTA, Washington, pp 136–150

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Robbins WA, Ashman RB (1984) Parent-offspring popping expansion correlations in progeny of dent corn × popcorn and flint corn × popcorn crosses. Crop Sci 24:119–121

    Article  Google Scholar 

  • Saghai Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: mendelian inheritance, chromosomal location, and population, and population dynamics. PNAS 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc. (1989) SAS language guide. Release 6.03 edition. SAS Institute, Cary, NC, USA

  • Schön CC, Melchinger AE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG, Seitzer JF (1994) RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34:378–389

    Article  Google Scholar 

  • Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeates using a CT primer. Genome 36:884–889

    PubMed  CAS  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003a) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch S (2003b) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ESP (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Tang H, Yan JB, Huang YQ, Zheng YL, Li JS (2005) QTL mapping of five agronomic traits in maize. Acta Genet Sin 32:203–209

    PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Veldboom LR, Lee M (1994) Molecular-marker facilitated studies of morphological traits in maize. II. Determination of QTLs for grain yield and yield components. Theor Appl Genet 88:451–458

    Article  Google Scholar 

  • Veldboom LR, Lee M, Woodman WL (1994) Molecular-marker facilitated studies in an elite maize population. I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet 88:7–16

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2006) Windows QTL cartographer 2.5. Department of statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart. htm)

  • Xiang DQ, Cao HH, Cao YG, Yang JP, Huang LJ, Wang SC, Dai JR (2001) Construction of a genetic map and location of quantitative yrait loci for yield component traits in maize by SSR markers. Acta Genet Sin 28:778–784

    PubMed  CAS  Google Scholar 

  • Xiao JH, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryze rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

  • Xiao YN, Li XH, George ML, Li MS, Zhang SH, Zheng YL (2005) Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol Biol Rep 23:155–165

    CAS  Google Scholar 

  • Xie XB, Song MH, Jin FX, Ahn SN, Suh JP, Hwang HG, McCouch SR (2007) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113:885–894

    Article  CAS  Google Scholar 

  • Yan CJ, Gu MH (2000) Advanced backcross QTL analysis and its potential in rice high yield breeding. Hereditas 22:419–422

    Google Scholar 

  • Yang JP, Rong TZ, Xiang DQ, Tang HT, Huang LJ, Dai JR (2005) QTL mapping of quantitative traits in maize. Acta Agron Sin 314:188–196

    Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. PNAS 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Ziegler KE, Ashman B (1994) Popcorn. In: Hallauer AR (ed) Specialty corns. CRC, New York, pp 189–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Li.

Additional information

Communicated by C. Hackett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.L., Niu, S.Z., Dong, Y.B. et al. Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn. Theor Appl Genet 115, 129–140 (2007). https://doi.org/10.1007/s00122-007-0549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0549-6

Keywords

Navigation