Skip to main content
Log in

Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seed size traits in soybean—length, width and thickness—and their corresponding ratios—length-to-width, length-to-thickness and width-to-thickness—play a crucial role in determining seed appearance, quality and yield. In this study, an attempt was made to detect quantitative trait loci (QTL) for the aforementioned seed size traits in F2:3, F2:4 and F2:5 populations from the direct and reciprocal crosses of Lishuizhongzihuang with Nannong 493-1, using multi-QTL joint analysis (MJA) along with composite interval mapping (CIM). A total of 121 main-effect QTL (M-QTL), six environmental effects, eight environment-by-QTL interactions, five cytoplasmic effects and 92 cytoplasm-by-QTL interactions were detected. Fifty-two common M-QTL across MJA and CIM, 21 common M-QTL in more than two populations and 5 M-QTL in all three populations showed the stability of the results. Five M-QTL had higher heritability, greater than 20%. In addition, 28 cytoplasm-by-QTL and 4 environment-by-QTL interactions were confirmed by CIM. Most M-QTL were clustered in eight chromosomal regions. Our results provide a good foundation for fine mapping, cloning and designed molecular breeding of favorable genes related to soybean seed size traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ayoub M, Symons SJ, Edney MJ, Mather DE (2002) QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet 105:237–247

    Article  CAS  PubMed  Google Scholar 

  • Bres-Patr YC, Lorieux M, Clement G, Bangratz M, Ghesquiere A (2001) Heredity and genetic mapping of domestication-related traits in a temperate Japonica weedy rice. Theor Appl Genet 102:118–126

    Article  Google Scholar 

  • Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Cober ER, Voldeng HD, Fregeau-Reid JA (1997) Heritability of seed shape and seed size in soybean. Crop Sci 37:1767–1769

    Article  Google Scholar 

  • Cui CX, Xuan YN (2007) Analysis of the factors affecting soybean trade in China and suggestions of strategies. World Agric 29:7–10

    Google Scholar 

  • Dou BD, Hou BW, Wang F, Yang JB, Ni ZF, Sun QX, Zhang YM (2010) Further mapping of quantitative trait loci for female sterility in wheat (Triticum aestivum L.). Genet Res 92:63–70

    Article  CAS  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan LH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Ma GR, Buss GR, Saghai Maroof MA (2000) Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Sci 40:1434–1437

    Article  CAS  Google Scholar 

  • Johnson SL, Fehr WR, Welke GA, Cianzo SR (2001) Genetic variability for seed size of two- and three-parent soybean populations. Crop Sci 41:1029–1033

    Article  Google Scholar 

  • Kazuyoshi T, Ayumi Y (1980) Major gene for controlling grain size in rice. Breed J 30:280–282

    Google Scholar 

  • Kim H, Lee S, Park K, Lee Y (2000) Identification of quantitative trait loci associated with seed size and weight in soybean. Korean J Crop Sci 45:227–231

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Leroy AR, Cianzio SR, Fehr WR (1991) Direct and indirect selection for small seed of soybean in temperate and tropical environments. Crop Sci 31:697–699

    Article  Google Scholar 

  • Li CD, Jiang HW, Zhang WB, Qiu PC, Liu CY, Li WF, Gao YL, Chen QS, Hu GH (2008) QTL analysis of seed and pod traits in soybean. Mol Plant Breed 6:1091–1100

    CAS  Google Scholar 

  • Liang HZ, LI WD, Wang H, Fang XJ (2005) Genetic effects on seed traits in soybean. Acta Genetica Sinica 32:1199–1204

    PubMed  Google Scholar 

  • Liang HZ, Wang SF, Yu YL, Wang TF, Gong PT, Fang XJ, Liu XY, Zhao SJ, Zhang MC, Li WD (2008) Mapping quantitative trait loci for six seed shape traits in soybean. Henan Agric Sci 45:54–60

    Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTL affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    CAS  PubMed  Google Scholar 

  • Lipp M, Brodmann P, Pietsch K, Pauwels J, Anklam E (1999) IUPAC collaborative trail study of a method to detect genetically modified soybeans and maize in dried powder. J AOAC Int 82:923–928

    CAS  PubMed  Google Scholar 

  • Mansur LM, Orf JH, Lark KG (1993) Determining the linkage of quantitative trait loci to RFLP marker using extreme phenotypes of recombinant inbreds of soybean (Glycine max L. Merr.). Theor Appl Genet 86:914–918

    CAS  Google Scholar 

  • Mansur LM, Org JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  • McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishiii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  CAS  PubMed  Google Scholar 

  • Nelson RL, Wang P (1989) Variation and evaluation of seed shape in soybean. Crop Sci 29:147–150

    Article  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Qin HD, Guo WZ, Zhang YM, Zhang TZ (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894

    Article  PubMed  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali AJ (2004) Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica 137:325–332

    Article  CAS  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (1999) Quantitative trait loci for antixenosis resistance to corn earworm in soybean. Crop Sci 39:531–538

    Article  Google Scholar 

  • Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11:209–214

    Article  CAS  PubMed  Google Scholar 

  • Salas P, Oyarzo-Llaipen JC, Wang D, Chase K, Mansur L (2006) Genetic mapping of seed shape in three population of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet 113:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Santos FR, Pena SDJ, Epplen JT (1993) Genetic and population study of an Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum Genet 90:655–656

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    CAS  PubMed  Google Scholar 

  • Shappley ZW, Jenkins JN, Zhu J, McCarty JC (1998) Quantitative trait loci associated with yield and fiber traits of upland cotton. J Cotton Sci 4:153–163

    Google Scholar 

  • Shi CH, Shen ZT (1994) Analysis of genetic effects of grain traits in indica rice. J Zhejiang Agric Univ 20:405–410

    Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Stoll M, Kwitek-Black AE, Cowley AW, Harris EL, Harrap SB, Krieger JE, Printz MP, Provoost AP, Sassard J, Jacob HJ (2000) New target regions for human hypertension via comparative genomics. Genome Res 10:473–482

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan V (2005) Control of seed size in plants. Proc Natl Acad Sci USA 102:17887–17888

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW, (2006) JoinMap Version 4.0: software for the calculation of genetic linkage in experimental populations. CPRO–DLO, Wageningen

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wan XY, Weng JF, Zhai HQ, Wang JK, Lei CL, Liu XL, Guo T, Jiang L, Su N, Wan JM (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wilson DO Jr (1995) Storage of orthodox seeds. In: Basra AS (ed) Seed quality: basic mechanisms agricultural implications. Food Products Press, New York, pp 173–208

    Google Scholar 

  • Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q (1999) Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O rufipogon. Theor Appl Genet 98:243–251

    Article  CAS  Google Scholar 

  • Xu SZ, Jia ZY (2007) Genomewide analysis of epistatic effect for quantitative trait in barley. Genetics 175:1955–1963

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Xu S (2005) A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity 95:96–104

    Article  CAS  PubMed  Google Scholar 

  • Zheng YL, Lai ZM, Yang KC (1985) The relationship between maize seed traits and seed size and the study on the genetics. J Sichuan Agric Univ 8:73–79

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Associate Editor Dr. Rajcan, Istvan, and two anonymous reviewers for their constructive comments and suggestions that significantly improved the manuscript. The work was supported by the 973 program (2011CB109300), Jiangsu Natural Science Foundation (BK2008335), the National Natural Science Foundation of China (30971848), the 111 Project (B08025) and NCET (NCET-05-0489) to YMZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Zhang.

Additional information

Communicated by I. Rajcan.

Y. Xu and H.-N. Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Li, HN., Li, GJ. et al. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet 122, 581–594 (2011). https://doi.org/10.1007/s00122-010-1471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1471-x

Keywords

Navigation