Skip to main content
Log in

QTL analysis for yield components and kernel-related traits in maize across multi-environments

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Huangzaosi, Qi319, and Ye478 are foundation inbred lines widely used in maize breeding in China. To elucidate genetic base of yield components and kernel-related traits in these elite lines, two F2:3 populations derived from crosses Qi319 × Huangzaosi (Q/H, 230 families) and Ye478 × Huangzaosi (Y/H, 235 families), as well as their parents were evaluated in six environments including Henan, Beijing, and Xinjiang in 2007 and 2008. Correlation and hypergeometric probability function analyses showed the dependence of yield components on kernel-related traits. Three mapping procedures were used to identify quantitative trait loci (QTL) for each population: (1) analysis for each of the six environments, (2) joint analysis for each of the three locations across 2 years, and (3) joint analysis across all environments. For the eight traits measured, 90, 89, and 58 QTL for Q/H, and 72, 76, and 51 QTL for Y/H were detected by the three QTL mapping procedures, respectively. About 70% of the QTL from Q/H and 90% of the QTL from Y/H did not show significant QTL × environment interactions in the joint analysis across all environments. Most of the QTL for kernel traits exhibited high stability across 2 years at the same location, even across different locations. Seven major QTL detected under at least four environments were identified on chromosomes 1, 4, 6, 7, 9, and 10 in the populations. Moreover, QTL on chr. 1, chr. 4, and chr. 9 were detected in both populations. These chromosomal regions could be targets for marker-assisted selection, fine mapping, and map-based cloning in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356

    Article  Google Scholar 

  • Ajmone-Marsan P, Monfredini G, Ludwig WF, Melchinger AE, Franceschini P, Pagnotto G, Motto M (1995) In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet 90:415–424

    CAS  Google Scholar 

  • Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Austin DF, Lee M (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38:1296–1308

    Article  CAS  Google Scholar 

  • Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought resistance. J Sci Food Agric 88:927–939

    Article  CAS  Google Scholar 

  • Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177:1801–1813

    Article  PubMed  Google Scholar 

  • Bohn M, Groh S, Khairallah MM, Hoisington DA, Utz HF, Melchinger AE (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103:1059–1067

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crop Res 101:172–179

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Crossa J, Gauch HG, Zobel RW (1990) Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci 30:493–500

    Article  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agric Res 14:742–754

    Article  Google Scholar 

  • Goldman IL, Rocheford TR, Dudley JW (1993) Quantitative trait loci influencing protein and starch concentration in the Illinois long term selection maize strains. Theor Appl Genet 87:217–224

    Article  CAS  Google Scholar 

  • Goldman IL, Rocheford TR, Dudley JW (1994) Molecular markers associated with maize kernel oil concentration in an Illinois high protein × Illinois low protein cross. Crop Sci 34:908–915

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49:565–571

    Article  PubMed  Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  • Henery ML, Westoby M (2001) Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92:479–490

    Article  Google Scholar 

  • Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu JS, Srivantaneeyakul S, Singh VP, Bagali PG, Prasanna HC, McLaren G, Khush GS (2003) Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107:679–690

    Article  PubMed  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Olek AT, Carpita NC (2000) Cell wall and membrane-associated exo-beta-d-glucanases from developing maize seedlings. Plant Physiol 123:471–485

    Article  PubMed  CAS  Google Scholar 

  • Kozumplik V, Pejic I, Senior L, Pavlina R, Graham G, Stuber CW (1996) Molecular markers for QTL detection in segregating maize populations derived from exotic germplasm. Maydica 41:211–217

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Larsen RJ, Marx ML (1985) An introduction to probability and its applications. Prentice Hall, Old Tappan

    Google Scholar 

  • Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344

    Article  CAS  Google Scholar 

  • Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL × environment interactions in rice. 1. Heading date and plant height. Theor Appl Genet 108:141–153

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang Y, Shi Y, Song Y, Wand T, Li Y (2009) Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin 42:408–418

    CAS  Google Scholar 

  • Lima MDA, de Souza CL, Bento DAV, de Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Lübberstedt T, Melchinger AE, Schön CC, Utz HF, Klein D (1997) QTL mapping in testcrosses of European flint lines of maize. 1. Comparison of different testers for forage yield traits. Crop Sci 37:921–931

    Article  Google Scholar 

  • Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed 20:41–51

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop improvement. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant Cell Environ 32:758–779

    Article  PubMed  CAS  Google Scholar 

  • Pidgeon JD, Ober ES, Qi A, Clark CJA, Royal A, Jaggard KW (2006) Using multi-environment sugar beet variety trials to screen for drought tolerance. Field Crop Res 95:268–279

    Article  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  PubMed  CAS  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118:123–137

    Article  PubMed  CAS  Google Scholar 

  • Revilla P, Butrón A, Malvar RA, Ordás RA (1999) Relationship among kernel weight, early vigor, and growth in maize. Crop Sci 39:654–658

    Article  Google Scholar 

  • Ribaut JM, Hoisington DA (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in crops. Field Crop Res 100:125–138

    Article  Google Scholar 

  • Sadras VO, Denison RF (2009) Do plant parts compete for resources? An evolutionary viewpoint. New Phytol 183:565–574

    Article  PubMed  Google Scholar 

  • Schaeffer M, Byrne P, Coe EH (2006) Consensus quantitative trait maps in maize: a database strategy. Maydica 51:357–367

    Google Scholar 

  • Schön CC, Melchinger AE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG (1994) RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34:378–389

    Article  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Song X, Huang W, Shi M, Zhu M, Lin H (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Sun X, Wu K, Zhao Y, Kong F, Han G, Jiang H, Huang X, Li R, Wang H, Li S (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Tollenaar M, Lee EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crop Res 75:161–169

    Article  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  PubMed  CAS  Google Scholar 

  • Utz HF (1997) PLABSTAT: a computer program for statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart, Germany. Available at http://www.uni-hohenheim.de/~ipspwww/soft.html (version 3Bwin of Feb 2010)

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Wen YX, Zhu J (2005) Multivariable conditional analysis for complex trait and its components. Acta Genetica Sinica 32:289–296

    PubMed  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterisation of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520

    PubMed  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants provided by the Ministry of Science and Technology of China (2011CB100100, 2009CB118401, 2009AA10AA03) and Natural Science Foundation of China (30730063). We thank Dr. M. Bohn and two anonymous reviewers for valuable suggestions and careful corrections. We also thank the help of Drs. Y. Saranga, Z. Peleg, R. Messmer, H.F. Utz, A.E. Melchinger and J. Leipner in the data analysis and of Dr. Bailin Li for revision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyu Wang or Yu Li.

Additional information

Communicated by M. Bohn.

B. Peng, Y. Wang, Y. Li have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Li, Y., Wang, Y. et al. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122, 1305–1320 (2011). https://doi.org/10.1007/s00122-011-1532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1532-9

Keywords

Navigation