Skip to main content

Advertisement

Log in

Isolation, characterization and evolution of NBS-LRR encoding disease-resistance gene analogs in eggplant against bacterial wilt

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial wilt (causal organism-Ralstonia solanacearum) is one of the most important soil-borne diseases of eggplant (Solanum melongena) worldwide. The best way to control it economically is to develop cultivars resistant to this soil-borne pathogen. Resistance gene (R-gene) cloning and sequencing to obtain resistance gene analogs (RGAs) is one of the most recent approaches for obtaining disease resistant cultivars. Three different types of degenerative PCR based primers were used for isolating RGAs from resistant cultivated/wild species through amplification of the target region of nucleotide binding site-leucine rich repeat (NBS-LRR). Genetic diversity was observed in the sequences isolated, and six sequences showing specific conserved motifs were shortlisted as Solanum melongena RGAs (Sm7RGA1, Sm7RGA2, Sm7RGA4, Sm7RGA8 and Sm7RGA10) and Solanum viarum RGA (SvRGA2). The RGAs isolated in this study belong to both toll interleukin-1 receptors (TIR)-NBS-LRR and non-TIR-NBS-LRR type R-genes and show similarity with other plant resistance genes. This study also confirmed the hypothesis that dicots have both TIR and non-TIR resistance genes. The present study on eggplant RGAs will help develop RGA based markers linked to bacterial wilt in eggplant and other plant species. Further, it will provide information and pave the way for elucidation at the molecular level of wild and cultivated species’ mechanism of resistance to bacterial wilt. This is the first report of NBS-LRR class resistance genes/RGA in resistant eggplant and its wild relatives against bacterial wilt (BW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts, M. G., te Lintel, H. B., Holub, E. B., Beynon, J. L., Stiekema, W. J., & Pereira, A. (1998). Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 11, 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Bai, J., Pennill, L. A., Ning, J., Lee, S. W., Ramalingam, J., Webb, C. A., Zhao, B., Sun, Q., Nelson, J. C., Leach, J. E., & Hulbert, S. H. (2002). Diversity in nucleotide binding site leucine-rich repeat genes in cereals. Genome Research, 12, 1871–1884.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cannon, S. B., Zhu, H., Baumgarten, A. M., Spangler, R., May, G., Cook, D. R., & Young, N. D. (2002). Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. Journal of Molecular Evolution, 54, 548–562.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Z., Huang, S., Ling, P., Chen, C., Yu, C., Weber, C. A., Moore, G. A., & Gmiter, F. G., Jr. (2000). Cloning and characterization of NBS-LRR class resistance gene candidate sequences in citrus. Theoretical and Applied Genetics, 101, 814–822.

    Article  CAS  Google Scholar 

  • Deslandes, L., Jocelyne O., Frédéric, T., Judith, H., Dong, X. F., Peter, B-E., Jim, B., & Yves, M. (2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes." Proceedings of the National Academy of Sciences 99, 4, 2404–2409.

  • Donald, T. M., Pellerone, F., Adam-Blondon, A. F., Bouquet, A., Thomas, M. R., & Dry, I. B. (2002). Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics, 104, 610–618.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, J., Dodds, P., & Pryor, T. (2000). Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology, 3, 278–284.

    Article  CAS  PubMed  Google Scholar 

  • FAO, (2012). Food and agriculture organization of The United Nations-Statistics division. http://faostat3.fao.org/browse/Q/QC/E. Accessed on February 2014.

  • Flor, H. H. (1946). Genetics of pathogenicity in Melampsora lini. Journal of Agricultural Research, 73, 335–357.

    Google Scholar 

  • Flor, H. H. (1947). Inheritance of reaction to rust in flax. Journal of Agricultural Research, 74, 241–262.

    Google Scholar 

  • Godiard, L., Sauviac, L., Torii, U. K., Grenon, O., Mangin, B., Grimsley, H. N., & Marco, Y. (2003). ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. The Plant Journal, 36, 353–365.

    Article  CAS  PubMed  Google Scholar 

  • Gullino, M. L., Minuto, A., & Garibaldi, A. (2002). Soil fumigation with chloropicrin in Italy: experimental results on melon, eggplant and tomato. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 67, 171–180.

    CAS  Google Scholar 

  • Jiang, S. M., Hu, J., Yin, W. B., Chen, Y. H., Wang, R. R. C., & Hu, Z. M. (2005). Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat- Thinopyrum intermedium. Theoretical and Applied Genetics, 111, 923–931.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, R. K., Mohanty, S., Subudhi, E., & Nayak, S. (2010). Isolation and characterization of NBS-LRR-resistance gene candidates in turmeric (Curcuma longa cv. surama). Genetics and Molecular Research, 9, 1796–1806.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, R. K., Mohanty, S., Kar, B., & Nayak, S. (2012). Assessment of genetic diversity in Zingiberaceae through nucleotide binding site-based motif-directed profiling. Biochemical Genetics, 50, 642–656.

    Article  CAS  PubMed  Google Scholar 

  • Kalloo, G., & Berg, B. O. (1993). Genetic improvement of vegetable crops (pp. 587–604). Oxford: Pergamon Press Ltd.

    Book  Google Scholar 

  • Kanazin, V., Frederick, M. L., & Shoemaker, R. C. (1996). Resistance gene analogs are conserved and clustered in soybean. Proceedings of the National Academy of Science, 93, 11746–11750.

    Article  CAS  Google Scholar 

  • Leister, D., Ballvora, A., Salamini, F., & Gebhardt, C. (1996). A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 14, 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C. E., Acosta, I. F., Jara, C., Pedraza, F., Gaitan-Solis, E., Gallego, G., Beebe, S., & Tohme, J. (2003). Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology, 93, 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Martin, G. B. (1999). Functional analysis of plant disease-resistance genes and their downstream effectors. Current Opinion in Plant Biology, 2, 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Martınez Zamora, M. G., Castagnaro, A. P., & Dıaz Ricci, J. C. (2004). Isolation and diversity analysis of resistance genes analogues (RGAs) from cultivated and wild strawberries. Molecular Genetics and Genomics, 272, 480–487.

    Article  PubMed  Google Scholar 

  • McHale, L., Tan, X., Koehl, P., & Michelmore, R. W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biology, 7, 212.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease-resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. The Plant Journal, 20, 317–332.

    Article  CAS  PubMed  Google Scholar 

  • Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-wide analysis of NBS–LRR-encoding genes in Arabidopsis. Plant Cell, 15, 809–834.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michelmore, R. W., & Meyers, B. C. (1998). Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Research, 8, 1113–1130.

    CAS  PubMed  Google Scholar 

  • Murray, M. G., & Thompson, W. R. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mutlu, N., Miklas, P. N., & Coyne, D. P. (2006). Resistance gene analog polymorphism (RGAP) markers co-localize with disease-resistance genes and QTL in common bean. Molecular Breeding, 17, 127–135.

    Article  CAS  Google Scholar 

  • Noir, S., Combes, M.-C., Anthony, F., & Lashermes, P. (2001). Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Molecular Genetics and Genomics, 265, 654–662.

    Article  CAS  PubMed  Google Scholar 

  • Peter, P., Ildiko, V., Maarja, L., Andras, C., Neil, B., Jari, P. T. V., & Jaakko, H. (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods, 9, 6.

    Article  Google Scholar 

  • Reddy Lakshmana, D. C., Pattanayak Subhada, Singh, T. K., & Aswath, C. (2011). Identification of molecular markers linked to resistance against bacterial wilt (Ralstonia solanacearum) in eggplant. 7th international symposium on invitro & horticultural breeding “biotechnological advances in invitro horticultural breeding” at Belgium from 18/09/2011 to 22/09/2011.

  • Rout, E., Nanda, R.S., Nayak, S., & Joshi, R.K. (2014). Molecular characterization of NBS encoding resistance genes and induction analysis of a putative candidate gene linked to Fusarium basal rot resistance in Allium sativum. Physiological and Molecular Plant Pathology, 85, 15–24.

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Seah, S., Sivasithamparam, K., Karakousis, A., & Lagudah, E. S. (1998). Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theoretical and Applied Genetics, 97, 937–945.

    Article  CAS  Google Scholar 

  • Sihachakr, D., Daunay, M.C., Serraf, I., Chaput, M.H., Mussio, I., Haicour, R., Rossignol, L., & Ducreux, G. (1994). Somatic hybridization of eggplant (Solanum melongena L.) with its close and wild relatives. In Y.P.S. Bajaj (Ed.) Biotechnology in agriculture and forestry, somatic hybridization in crop improvement (1:255–278). Springer: Berlin.

  • Soriano, J. M., Vilanova, E. S., Romero, E. C., Llacer, G., & Badenes, E. M. L. (2005). Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theoretical and Applied Genetics, 110, 980–989.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarr, D. E. K., & Alexander, H. M. (2009). TIR-NBS genes are rare in monocots: evidence from diverse monocot orders. BMC Research Notes, 2, 197.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thirumalaiandi, R., Selvaraj, M. G., Rajasekaran, R., & Subbarayalu, M. (2008). Cloning and characterization of resistance gene analogs from underexploited plant species. Electronic Journal of Biotechnology, 11, 1–11.

    Article  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian, Y., Fan, L., Thurau, T., Jung, C., & Cai, D. (2004). The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. Journal of Molecular Evolution, 58, 40–53.

    Article  CAS  PubMed  Google Scholar 

  • Totad, A. S., Fakrudin, B., & Kuruvinashetti, M. S. (2005). Isolation and characterization of resistance gene analogs (RGAs) from sorghum (Sorghum bicolor L. Moench). Euphytica, 143, 179–188.

    Article  CAS  Google Scholar 

  • Urquhart, L., Mienie, N. J. J., & Steyn, P. L. (1998). The effect of temperature, storage period and inoculum concentration on symptom development and survival of ralstonia solanacearum in inoculated tubers. In P. Prior et al. (Eds.), Bacterial wilt disease (pp. 351–357). New York: Springer-Verlag Berlin Heidelberg.

    Chapter  Google Scholar 

  • Van der Linden, C. G., Wouters DC, A. E., Mihalka, V., Kochieva, E. Z., Smulders, M. J. M., & Vosman, B. (2004). Efficient targeting of plant disease resistance loci using NBS profiling. Theoretical and Applied Genetics, 109, 384–393.

    Article  PubMed  Google Scholar 

  • Wan, H., Zhao, Z., Malik, A. A., Qian, C., & Chen, J. (2010). Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biology, 10, 186.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu, Q., Wen, X., & Deng, X. (2005). Isolation of TIR and nonTIR NBS–LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theoretical and Applied Genetics, 111, 819–830.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Chen, R., Zhang, J., Ouyang, B., Xiao, J., Li, H., & Ye, Z. (2008). Cloning and analysis of resistance gene analogs from pepper (Capsicum annuum L.). Scientia Agricultura Sinica, 41(1), 169–175.

    Google Scholar 

  • Zhuang, Y., Zhou, X., & Wang, S. (2012). Genetic diversity of NBS-LRR class-resistance gene analogs in cultivated and wild eggplants. Plant Systematics and Evolution, 298, 1399–1406.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, Indian Institute of Horticultural Research (IIHR), Bangalore, for providing research facilities and funding the above research work. Special thanks are due to Dr. Leela Sahijram for critical editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Lakshmana Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, A.C., Venkat, S., Singh, T.H. et al. Isolation, characterization and evolution of NBS-LRR encoding disease-resistance gene analogs in eggplant against bacterial wilt. Eur J Plant Pathol 143, 417–426 (2015). https://doi.org/10.1007/s10658-015-0693-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0693-9

Keywords

Navigation