Skip to main content
Log in

Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Degenerate oligonucleotide primers, designed based on conserved regions of Nucleotide Binding Site (NBS) domains from previously cloned plant resistance genes, were used to isolate Resistance Gene Analogues (RGAs) from wild and cultivated strawberries. Seven distinct families of RGAs of the NBS-LRR type were identified from two related wild species, Fragaria vesca and F. chiloensis, and six different Fragaria × ananassa cultivars. With one exception (GAV-3), the deduced amino acid sequences of strawberry RGAs showed strong similarity to TIR (Toll Interleukin I Receptor)-type R genes from Arabidopsis, tobacco and flax, suggesting the existence of common ancestors. GAV-3 seemed to be more closely related to the non-TIR type. Further studies showed that the recombination level and the ratio of non-synonymous to synonymous substitutions within families were low. These data suggest that NBS-encoding sequences of RGAs in strawberry are subject to a gradual accumulation of mutations leading to purifying selection, rather than to a diversifying process. The present paper is the first report on RGAs in strawberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarts MG, te Lintel Hekkert B, Holub BT, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant-Microbe Interact 11:251–258

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, Calif., pp 28–36

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  Google Scholar 

  • Bent AF (1996) Plant disease resistance gene: function meets structure. Plant Cell 8:1757–1771

    Article  CAS  PubMed  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  CAS  PubMed  Google Scholar 

  • Castagnaro A, Maraña C, Carbonero P, García-Olmedo E (1992) Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor. J Mol Biol 224:1003–1009

    CAS  PubMed  Google Scholar 

  • Cordero JC, Skinner DZ (2002) Isolation from alfalfa of resistance gene analogues containing nucleotide binding sites. Theor Appl Genet 104:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenesis: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fluhr R (2001) Sentinels of disease. Plant resistance genes. Plant Physiol 127:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Galletta GJ, Smith BJ, Gupton CL (1993) Strawberry parent clones US70, US159, US292, and US438 resistant to anthracnose crown rot. Hortscience 28:1055–1056

    Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  CAS  PubMed  Google Scholar 

  • Haymes KM, Henken B, Davis TM, van de Weg WE (1997) Identification of RAPD markers linked to a Phytophthora fragariae resistance gene ( Rpf1) in the cultivated strawberry. Theor Appl Genet 94:1097–1101

    Article  CAS  Google Scholar 

  • Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Research 24:3439–3452

    Article  CAS  PubMed  Google Scholar 

  • Hofman K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219

    Google Scholar 

  • Huettel B, Santra D, Muehlbauer FJ, Kahl G (2002) Resistance gene analogues of chickpea ( Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479-490

    Article  CAS  PubMed  Google Scholar 

  • Hulbert S H, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Joyeux A, Fortin MG, Mayerhofer R, Good AG (1999) Genetic mapping of plant disease resistance gene homologues using a minimal Brassica napus L. population. Genome 42:735–743

    Article  CAS  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide seqeunce. J Mol Biol 16:111–120

    CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1996) Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J Mol Biol 264:1028–1043

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Seo JS, Rodriguez-Lanetty M, Lee DH (2003) Comparative analysis of superfamilies of NBS-encoding disease resistance gene analogs in cultivated and wild apple species. Mol Genet Genomics 269:101–108

    CAS  PubMed  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    CAS  PubMed  Google Scholar 

  • Lerceteau-Kohler E, Roudeillac P, Markocic M, Guerin G, Praud K, Denoyes-Rohan B (2002) The use of molecular markers for durable resistance breeding in the cultivated strawberry ( Fragaria x ananassa). Acta Hort 567:615–618

    CAS  Google Scholar 

  • Martin GB (1999) Functional analysis of plant disease resistance genes and their downstream effectors. Curr Opin Plant Biol 2:273–279

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Noel L, Moores TL, van Der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JD (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11:2099–2112

    Article  CAS  PubMed  Google Scholar 

  • Noir S, Combes MC, Anthony F, Lashermes P (2001) Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees ( Coffea L.). Mol Genet Genomics 265:654–662

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, M S, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    CAS  PubMed  Google Scholar 

  • Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  • Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    CAS  PubMed  Google Scholar 

  • Shen KA, Meyers BC, Nurul Islam-Faridi M, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    CAS  PubMed  Google Scholar 

  • Speulman E, Bouchez D, Holub EB, Beynon JL (1998) Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J 14:467–474

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Fan L, Thurau, T, Jung C, Cai D (2004) The absence of TIR-type resistance gene analogues in the sugar beet ( Beta vulgaris L.) genome. J Mol Evol 58:40–53

    Article  CAS  PubMed  Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form di§erent types of nucleotide-binding sites. Eur J Biochem 222:919

    CAS  PubMed  Google Scholar 

  • Weising K, Atkinson RG, Gardner RC (1995) Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. PCR Methods Appl 4:249–255

    CAS  PubMed  Google Scholar 

  • Yu YG, Buss GR, Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93:11751–11756

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was partially supported by grants PICT-7227, PICT-7229 from FONCYT and 26/D209 from CIUNT. Degenerate PCR primers were kindly provided by Dr. Fernando García-Arenal from ETSIA-Universidad Politécnica de Madrid, Spain. This work was carried out in compliance with the current laws regulating genetic experimentation in Argentina. GMZ is a fellow from CONICET and APC and JCDR are members of CONICET

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Díaz Ricci.

Additional information

Communicated by M.-A. Grandbastien

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez Zamora, M.G., Castagnaro, A.P. & Díaz Ricci, J.C. Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol Genet Genomics 272, 480–487 (2004). https://doi.org/10.1007/s00438-004-1079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1079-4

Keywords

Navigation