Skip to main content
Log in

Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The performance of cyanobacteria and Trichoderma based biocontrol formulations was evaluated in two cotton varieties (Gossypium hirsutum F1861 and Gossypium arboreum CISA 310). Evaluation of mortality after 4 weeks revealed a significant reduction, particularly in G. hirsutum F1861, with values of 13 % (lower by 2 % over the Trichoderma commercial biocontrol agent). The percent mortality after drenching with the compost tea prepared using respective formulations, ranged from 28 to 75 % in G. arboreum CISA 310, with significantly lower values of 6–37.3 % in G. hirsutum. The Anabaena laxa RPAN8 formulation showed the lowest mortality. The activity of hydrolytic enzymes—β-1, 3 glucanase (EGase EC 3.2.1.39), β-1, 4 glucanase (EGase EC, 3.2.1.4) and chitosanase (EC 3.2.1.99) showed a significant enhancement in the inoculated treatments (T1–T6), with Calothrix sp. being among the top ranked treatments in both varieties. Comparison of DNA fingerprints (HIP-TG profiles) of rhizospheric soil DNA with those of corresponding pure cultures revealed a high degree of similarity, confirming the colonization of inoculated organisms. An amplicon of 1000 bp was observed in the soil metagenomic PCR-DNA profiles from both varieties, which confirmed the presence of an endoglucanase gene. Comparative analyses of responses of the two varieties revealed that Gossypium hirsutum F1861 showed higher values of hydrolytic enzymes and available N in soil. On the other hand, microbial inoculation elicited higher levels of chitosanase and defense enzyme activity in Gossypium arboreum CISA 310. This represents a first report illustrating the significance of varietal responses in cotton in relation to the efficacy of microbial biocontrol formulations and their establishment in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bashan, Y. (1998). Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnology Advances, 16, 729–770.

    Article  CAS  Google Scholar 

  • Chaudhary, V., Prasanna, R., Nain, L., Dubey, S. C., Gupta, V., Singh, R., Jaggi, S., & Bhatnagar, A. K. (2012). Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World Journal of Microbiology and Biotechnology, 28, 3301–3310.

    Article  PubMed  Google Scholar 

  • Chen, C., Bauske, E., Musson, G., Rodriguez-Kabana, R., & Kloepper, J. W. (1995). Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 5, 83–91.

    Article  Google Scholar 

  • Clayton, B. D. (2011). King Cotton: A cultural, political, and economic history since 1945. Jackson: University Press of Mississippi. 440 pp.

    Google Scholar 

  • Dalisay, R. F., & Kuc, J. A. (1995). Persistence of reduced penetration by Colletotrichum lagenarium into cucumber leaves with induced systemic resistance and its relation to enhanced peroxidase and chitinase activity. Physiological and Molecular Plant Pathology, 47, 329–338.

  • Dukare, A. S., Prasanna, R., Dubey, S. C., Chaudhary, V., Nain, L., Singh, R., & Saxena, A. K. (2011). Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Protection, 30, 436–442.

    Article  Google Scholar 

  • Dunlop, R. W., Simon, A., Siwasithamparam, D., & Ghisalberti, E. L. (1989). An antibiotic from Trichoderma koningii active against soilborne plant pathogens. Journal of Natural Products, 52, 67–74.

    Article  CAS  Google Scholar 

  • Fang, C., Zhuang, Y., Xu, T., Li, Y., et al. (2013). Changes in rice allelopathy and rhizosphere microflora by inhabiting rice phenyl ammonia-lyase gene expression. Journal of Chemical Ecology, 39, 204–212.

    Article  CAS  PubMed  Google Scholar 

  • Gaur, R. B., & Sharma, R. N. (2012). Bio-control technology: development, production and popularization for plant disease control in semi-arid region of Rajasthan, India—a success story. Journal of Progressive Agriculture, 3, 1–7.

    Google Scholar 

  • Gaur, R. B., Sharma, R. N., & Singh, V. (2005). Manipulations in the mycoparasite application techniques against Rhizoctonia root rot of cotton. Indian Phytopathology, 58, 402–409.

    Google Scholar 

  • Gupta, V., Prasanna, R., Natarajan, C., Srivastava, A. K., & Sharma, J. (2010). Identification, characterization and regulation of a novel antifungal chitosanase gene (cho) in Anabaena spp. Applied and Environmental Microbiology, 76, 2769–2777.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta, V., Natarajan, C., Kumar, K., & Prasanna, R. (2011). Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa (Cyanobacteria). Journal of Applied Phycology, 23, 73–81.

    Article  CAS  Google Scholar 

  • Gupta, V., Ratha, S. K., Sood, A., Chaudhary, V., & Prasanna, R. (2013). New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Research, 2, 69–97.

    Article  Google Scholar 

  • Haggag, W. M., & Timmusk, S. (2008). Colonisation of peanut roots by biofilm forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology, 104, 961–969.

    Article  CAS  PubMed  Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4–10.

    Article  Google Scholar 

  • Huang, J. (1986). Ultrastructure of bacterial penetration in plants. Annual Review of Phytopathology, 24, 141–157.

    Article  Google Scholar 

  • Jayasinghearachchi, H. S., & Seneviratne, G. (2004). A bradyrhizobial- Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biology and Fertility of Soils, 40, 432–434.

    Article  CAS  Google Scholar 

  • Jennings, P. H., Brannaman, B. L., & Zoheille, F. P. (1969). Peroxidase and polyphenol oxidase activity and associated with Helminthosporium leaf spot of maize. Phytopathology, 59, 963–967.

    CAS  PubMed  Google Scholar 

  • Jensen, H. L. (1951). Notes on the biology of Azotobacter. Proceedings of the Society of Applied Bacteriology, 14, 89–94.

    Article  Google Scholar 

  • Kachroo, A., & Robin, G. P. (2013). Systemic signaling during plant defense. Current Opinion in Plant Biology, 16, 527–533.

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Lata, N., & Kaushik, B. D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43, 23–30.

    Article  CAS  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. D. (2009). Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Kloepper, J. W., & Ryu, C. M. (2006). Bacterial endophytes as elicitors of induced systemic resistance. In B. Schulz, C. Boyle, & T. N. Sieber (Eds.), Soil biology, microbial root endophytes (Vol. 9, pp. 33–52). Berlin: Springer.

    Chapter  Google Scholar 

  • Kranthi, K. R. (2012). Bt Cotton: Questions and answers. Mumbai: Indian Society for Cotton Improvement. 70p.

    Google Scholar 

  • Kulik, M. M. (1995). The potential for using cyanobacteria (blue green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European Journal of Plant Pathology, 101, 585–599.

    Article  Google Scholar 

  • Lucas, J. A., Cristobal, J. G., Bonilla, A., Ramos, B., & Manero, J. G. (2014). Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress including systemic resistance in rice seedlings. Plant Physiology and Biochemistry, 82, 44–53.

    Article  CAS  PubMed  Google Scholar 

  • Manjunath, M., Prasanna, R., Nain, L., Dureja, P., Singh, R., Kumar, A., Jaggi, S., & Kaushik, B. D. (2010). Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Archives of Phytopathology and Plant Protection, 43, 666–677.

    Article  Google Scholar 

  • Monga, D., & Raj, S. (1997). Integrated management of root rot of cotton. International Conference on Integrated Plant Disease Management for Sustainable Agriculture, IARI, New Delhi, November 10–15, 1997.

  • Nain, L., Rana, A., Joshi, M., Jadhav, S. D., Kumar, D., Shivay, Y. S., Paul, S., & Prasanna, R. (2010). Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant and Soil, 331, 217–230.

    Article  CAS  Google Scholar 

  • Natarajan, C., Prasanna, R., Gupta, V., Dureja, P., & Lata, N. (2012). Dissecting the fungicidal activity of Calothrix elenkinii using chemical analyses and microscopy. Applied Biochemistry and Microbiology, 48, 53–57.

    Article  Google Scholar 

  • Natarajan, C., Gupta, V., Kumar, K., & Prasanna, R. (2013). Molecular characterization of a fungicidal endoglucanase from the cyanobacterium Calothrix elenkinii. Biochemical Genetics, 51, 766–779.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, S., Prasanna, R., Pabby, A., Dominic, T. K., & Singh, P. K. (2004). Effect of urea and BGA- Azolla biofertilizers on nitrogen and chlorophyll accumulation in soil cores from rice fields. Biology and Fertility of Soils, 40, 67–72.

    Article  CAS  Google Scholar 

  • Nayak, S., Prasanna, R., Prasanna, B. M., & Sahoo, D. (2009). Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agro-ecologies of India. Journal of Basic Microbiology, 49, 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, M., Rasmussen, U., & Bergman, B. (2005). Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiology Letters, 245, 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agricultural Circular, 939.

  • Pereg, L., & McMillan, M. (2015). Scoping the potential uses if beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biology and Biochemistry, 80, 349–358.

    Article  CAS  Google Scholar 

  • Prasanna, R., Lata, Tripathi, R., Gupta, V., Chaudhary, V., Middha, S., Joshi, M., Ancha, R., & Kaushik, B. D. (2008). Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria-possible role of hydrolytic enzymes. Journal of Basic Microbiology, 48, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Prasanna, R., Jaiswal, P., Nayak, S., Sood, A., & Kaushik, B. D. (2009). Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian Journal of Microbiology, 49, 89–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasanna, R., Gupta, V., Natarajan, C., & Chaudhary, V. (2010). Bioprospecting for the genes involved in the production of chitosanases and microcystin-like compounds in Anabaena strains. World Journal of Microbiology and Biotechnology, 26, 717–724.

    Article  CAS  Google Scholar 

  • Prasanna, R., Pattnayak, S., Sugitha, T. C. K., Nain, L., & Saxena, A. K. (2011). Development of cyanobacterium based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiologica, 56, 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Prasanna, R., Babu, S., Rana, A., Kabi, S. R., Chaudhary, V., Gupta, V., Kumar, A., Shivay, Y. S., Nain, L., & Pal, R. K. (2013a). Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping sequence. Experimental Agriculture, 49, 416–434.

    Article  Google Scholar 

  • Prasanna, R., Chaudhary, V., Gupta, V., Babu, S., Kumar, A., Shivay, Y. S., & Nain, L. (2013b). Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. European Journal of Plant Pathology, 13, 337–353.

    Article  Google Scholar 

  • Prasanna, R., Kumar, A., Babu, S., Chawla, G., Chaudhary, V., Singh, S., Gupta, V., Nain, L., & Saxena, A. K. (2013c). Deciphering the biochemical spectrum of novel cyanobacterium based biofilms for use as inoculants. Biological Agriculture & Horticulture, 29, 145–158.

    Article  Google Scholar 

  • Prasanna, R., Triveni, S., Bidyarani, N., Babu, S., Yadav, K., Adak, A., Khetarpal, S., Pal, M., Shivay, Y. S., & Saxena, A. K. (2014). Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Sciences, 60, 349–366.

    Article  Google Scholar 

  • Prasanna, R., Babu, S., Bidyarani, N., Kumar, A., Triveni, S., Monga, D., Mukherjee, A. K., Kranthi, S., Gokte-Narkhedkar, N., Adak, A., Yadav, K., Nain, L., & Saxena, A. K. (2015). Exploring the potential of cyanobacteria as plant growth promoting and biocontrol agents in cotton. Experimental Agriculture, 51, 42–65.

    Article  Google Scholar 

  • Raj, S., Taneja, N. K., Meshram, M. K., & Bambawale, O. M. (1998). Integrated management of cotton diseases and strategies for tomorrow. In R. K. Upadhyay, K. G. Mukerji, B. P. Charmola, & O. P. Dubey (Eds.), Integrated pest and disease management (pp. 431–474). New Delhi: A.P. Publishing Corporation.

    Google Scholar 

  • Rajendran, L., Samiyappan, R., Raguchander, T., & Saravanakumar, D. (2007). Endophytic bacteria mediated plant resistance against cotton bollworm. Journal of Plant Interactions, 2, 1–10.

    Article  CAS  Google Scholar 

  • Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasan, V., & Samiyappan, R. (2001). Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20, 1–11.

    Article  CAS  Google Scholar 

  • Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118–126.

    Article  CAS  Google Scholar 

  • Ruano-rosa, D., Cazorla, F. M., Bonilla, N., Martin-Perez, R., De Vicente, A., & Lopez-Herrera, C. J. (2014). Biological control of avocado white root rot with combined application of Trichoderma spp. and rhizobacteria. European Journal of Plant Pathology, 138, 751–762.

    Article  Google Scholar 

  • Scala, F., Raio, A., Zoina, A., Lorito, M., Chincholkar, S., & Mukerji, K. (2007). Biological control of fruit and vegetable diseases with fungal and bacterial antagonists: The Trichoderma and Agrobacterium cases. In S. B. Chincholkar & K. G. Mukerji (Eds.), Biological control of plant diseases: Current concepts (pp. 151–190). USA: Haworth Press.

    Google Scholar 

  • Sergeeva, E., Liaimer, A., & Bergman, B. (2002). Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta, 215, 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 89, 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Singh, D., Prabha, R., Yandigeri, M., & Arora, D. (2011). Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie van Leeuwenhoek, 100, 557–568.

    Article  CAS  PubMed  Google Scholar 

  • Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews in Immunology, 12, 89–100.

    Article  CAS  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue green algae (Order: Chroococcales). Bacteriological Reviews, 35, 171–205.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the determination of available nitrogen in soils. Current Science, 25, 259–260.

    CAS  Google Scholar 

  • Svircev, Z., Tamas, I., Nenin, P., & Drobac, A. (1997). Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Applied Soil Ecology, 6, 301–308.

    Article  Google Scholar 

  • Swarnalakshmi, K., Prasanna, R., Kumar, A., Pattnaik, S., Chakravarty, K., Shivay, Y. S., Singh, R., & Saxena, A. K. (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 55, 105–116.

    Article  Google Scholar 

  • Timmusk, S., Grantcharova, N., & Wagner, E. G. H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology, 11, 7292–7300.

    Article  Google Scholar 

  • Triveni, S., Prasanna, R., Shukla, L., & Saxena, A. K. (2012). Optimization of conditions for in vitro development of Trichoderma viride-based biofilms as potential inoculants. Folia Microbiologica, 57, 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Triveni, S., Prasanna, R., Shukla, L., & Saxena, A. K. (2013). Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth promoting inoculants. Annals of Microbiology, 63, 1147–1156.

    Article  CAS  Google Scholar 

  • Venkataraman, G. S. (1981). Blue green algae: a possible remedy to nitrogen scarcity. Current Science, 50, 253–256.

    Google Scholar 

  • Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal, 37, 1–20.

    Article  Google Scholar 

  • Wendehenne, D., Gao, Q. M., Kachroo, A., & Kachroo, P. (2014). Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology, 20, 127–134.

Download references

Acknowledgments

This study was supported partially by the funds from Department of Biotechnology (DBT) and the Network Project on Microorganisms “Application of Microorganisms in Agricultural and Allied Sectors” (AMAAS- Theme: Microbial Genomics) granted by Indian Council of Agricultural Research (ICAR), New Delhi. The authors are also thankful to CICR (Central Institute of Cotton Research), Sirsa for facilitating and conducting the field trial. The authors are also thankful to Dr V.V. Ramamurthy, Division of Entomology, IARI and the project staff of the Network Project on Insect Biosystematics in Division of Entomology, IARI, for assistance in the scanning electron microscopy analyses. The Division of Microbiology, IARI, New Delhi is gratefully acknowledged for providing the necessary facilities to undertake this study.

Conflict of interest

The authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, S., Bidyarani, N., Chopra, P. et al. Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. Eur J Plant Pathol 142, 345–362 (2015). https://doi.org/10.1007/s10658-015-0619-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0619-6

Keywords

Navigation