Skip to main content
Log in

In situ tunability of bacteria derived hierarchical nanocellulose: current status and opportunities

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The most commonly occurring biopolymer, cellulose, is typically extracted from plants and trees after harsh chemical processing. Bacterial cellulose (BC), produced by a simple fermentation process using sugar-rich media, is superior to plant cellulose owing to its purity, porosity, crystallinity, water holding capacity, and nanofibrous nature. However, the application of BC is still limited owing to the need for application-specific tunability. The benchtop production of BC in a controlled environment allows in situ tunability of its structure and morphology during synthesis (pre-production and during-production), in addition to the conventional post-production strategies. A review of literature on various modification strategies with an emphasis on in situ modifications is presented and their capability to alter crystallinity, porosity, nanofiber dimensions, mechanical properties, and yield are discussed in detail. This review concludes with a section dedicated to the future scope of applications of BC which can be primarily enabled by in situ modifications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • (2018) Microbial cellulose dressing. https://finnpartnership.fi/wp-content/uploads/2018/01/Seven-Biotechnology-company-presentation.pdf

  • Abdelhady H-M, Hassan EA et al (2015) Bacterial cellulose production as affected by bacterial strains and some fermentation conditions. Nat Sci 13:30–40

    Google Scholar 

  • Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061

    Article  CAS  PubMed  Google Scholar 

  • AL-Kalifawi EJ, Hassan IA (2014) Factors Influence on the yield of bacterial cellulose of kombucha (Khubdat Humza). Baghdad Sci J 11:1420–1428

    Article  Google Scholar 

  • Amano Y, Nozaki YO, Saxena IM et al (2004) The relationship between cellulase activity and oligosaccharides and cellulose productions by Acetobacter xylinum ATCC23769. Jpn Sci Soc Biol Macromol 4:83–90

    Google Scholar 

  • Amnuaikit T, Chusuit T, Raknam P, Boonme P (2011) Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices Evid Res 4:77–81

    Google Scholar 

  • Ashjaran A, Yazdanshenas ME, Rashidi A, Khajavi R (2012) Biosorption thermodynamic and kinetic of direct dye from aqueous solutions on bacterial cellulose. Afr J Microbiol Res 6:1270–1278

    Article  CAS  Google Scholar 

  • Axcelon Dermacare Inc 2020 Axcelon Dermacare Inc (2020) https://www.axcelondc.com/

  • Bäckdahl H, Esguerra M, Delbro D et al (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330

    Article  PubMed  CAS  Google Scholar 

  • Badshah M, Ullah H, Khan AR et al (2018) Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113:526–533

    Article  CAS  PubMed  Google Scholar 

  • Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20:1366–1371

    Article  CAS  PubMed  Google Scholar 

  • Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107

    Article  CAS  PubMed  Google Scholar 

  • Baycode (2011) Bio cellulose and its use in headphones-earphones(referring the recent item example: vsonic GR-07(R07). https://www.head-fi.org/threads/biocellulose-and-its-use-in-headphones-earphones-referring-the-recent-iem-example-vsonic-gr-07-r07.568694/

  • Beekmann U, Schmölz L, Lorkowski S et al (2020) Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydr Polym 236:116062

    Article  CAS  PubMed  Google Scholar 

  • Benoliel B, Torres FAG, de Moraes LMP (2013) A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. Springerplus 2:656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bi JC, Liu SX, Li CF et al (2014) Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. J Appl Microbiol 117:1305–1311

    Article  CAS  PubMed  Google Scholar 

  • Bielecki S, Kalinowska H, Krystynowicz A et al. (2012) Wound dressings and cosmetic materials from bacterial nanocellulose. In: Bacterial nanoCellulose. CRC Press, pp 157–174

  • Bottan S, Robotti F, Jayathissa P et al (2015) Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9:206–219

    Article  CAS  PubMed  Google Scholar 

  • Buettner J (2014) Investigation of Bacterial cellulose as a carbon fiber precursor and its potential for piezoelectric energy harvesiting. Master’s thesis, Cornell University

  • Cavka A, Guo X, Tang S-J et al (2013) Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels 6:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications (review). Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Chen SQ, Lopez-Sanchez P, Wang D et al (2018) Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocoll 81:87–95

    Article  CAS  Google Scholar 

  • Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromol 12:730–736

    Article  CAS  Google Scholar 

  • Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text East Eur 12:69–72

    CAS  Google Scholar 

  • Clasen C, Sultanova B, Wilhelms T et al (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58

    Article  CAS  Google Scholar 

  • Çoban EP, Biyik H (2011) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr J Biotechnol 10:5346–5354

    Google Scholar 

  • Cacicedo ML, León IE, Gonzalez JS et al (2016) Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surfaces B Biointerfaces 140:421–429

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose: the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  PubMed  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM, Malcolm Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411

    Article  CAS  Google Scholar 

  • Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453

    Article  CAS  PubMed  Google Scholar 

  • de Lima FM, Meneguin AB, Tercjak A et al (2018) Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 179:126–134

    Article  CAS  Google Scholar 

  • Dhar P, Etula J, Bankar SB (2019) In situ bioprocessing of bacterial cellulose with graphene: percolation network formation, kinetic analysis with physicochemical and structural properties assessment. ACS Appl Bio Mater 2:4052–4066

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos RAC, Berretta AA, Barud HDS et al (2014) Draft genome sequence of komagataeibacter rhaeticus strain AF1, a high producer of cellulose, isolated from kombucha tea. Genome Announc 2:e00731-e814

    PubMed  PubMed Central  Google Scholar 

  • Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298

    Article  CAS  PubMed  Google Scholar 

  • Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Ital Oral Surg 2:113–119

    Google Scholar 

  • Feng X, Ullah N, Wang X et al (2015) Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. J Food Sci 80:2217–2227

    Article  CAS  Google Scholar 

  • Fu L, Zhang Y, Li C et al (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22:12349–12357

    Article  CAS  Google Scholar 

  • Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press

    Google Scholar 

  • Gao W-H, Chen K-F, Yang R-D et al (2010) Properties of bacterial cellulose and its influence on the physical properties of paper. BioResources 6:144–153

    Article  Google Scholar 

  • Greca LG, Lehtonen J, Tardy BL et al (2018) Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Mater Horizons 5:408–415

    Article  CAS  Google Scholar 

  • Haigler CH, Brown RM, Benziman M (1980) Calcofluor white ST Alters the in vivo assembly of cellulose microfibrils. Science 210:903–906

    Article  CAS  PubMed  Google Scholar 

  • Haigler CH, White AR, Brown RM, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94:64–69

    Article  CAS  PubMed  Google Scholar 

  • Hasan N, Biak DRA, Kamarudin S (2012) Application of bacterial cellulose (BC) in natural facial scrub. Int J Adv Sci Eng Inf Tecnhology 2:1–4

    Google Scholar 

  • Heath BP, Coffindaffer TW, Kyte KE et al. (2012) Personal cleansing compositions comprising a bacterial cellulose network and cationic polymer

  • Hesse S, Kondo T (2005) Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates. Carbohydr Polym 60:457–465

    Article  CAS  Google Scholar 

  • Heßler N, Klemm D (2009) Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16:899–910

    Article  CAS  Google Scholar 

  • Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213

    Article  CAS  Google Scholar 

  • Hiremath L, Chayapathy V, Bhat A et al. (2020) Formation of enzymatic fuel cell using carbon nanotubes and bacterial cellulose for its usage in generation of power in sewage water. AIP Conf Proc 2274

  • Hosseini H, Kokabi M, Mousavi SM (2018) Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohydr Polym 201:228–235

    Article  CAS  PubMed  Google Scholar 

  • Hsieh J-T, Wang M-J, Lai J-T, Liu H-S (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J Taiwan Inst Chem Eng 63:46–51

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromol 11:1727–1734

    Article  CAS  Google Scholar 

  • Hu Y, Liu H, Zhou X et al (2019) Surface engineering of spongy bacterial cellulose via constructing crossed groove/column micropattern by low-energy CO2 laser photolithography toward scar-free wound healing. Mater Sci Eng C 99:333–343

    Article  CAS  Google Scholar 

  • Huang HC, Chen LC, Bin LS et al (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zheng M, Lin Z et al (2015) Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J Mater Chem A 3:10910–10918

    Article  CAS  Google Scholar 

  • Hwang JW, Yang YK, Hwang JK et al (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183–188

    Article  CAS  PubMed  Google Scholar 

  • Iguchi M, Mitsuhashi S, Ichimura K et al. (1988) Bacterial cellulose-containing molding material having high dynamic strength

  • Ishida T, Mitarai M, Sugano Y, Shoda M (2003) Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol Bioeng 83:474–478

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Indrarti L, Azuma JII (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5:215–228

    Article  CAS  Google Scholar 

  • Jayabalan R, Malbaša RV, Lončar ES et al (2014) A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf 13:538–550

    Article  PubMed  Google Scholar 

  • Jiang Q, Ghim D, Cao S et al (2018) Photothermally active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ Sci Technol 53:412–421

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Chen W, Li Z et al (2018) Patterned bacterial cellulose wound dressing for hypertrophic scar inhibition behavior. Cellulose 25:6705–6717

    Article  CAS  Google Scholar 

  • Jozala AF, Pértile RAN, dos Santos CA et al (2014) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarczyk D, Lochyński S (2014) Products of biotransformation of tea infusion: properties and application. Poloish J Nat Sci 29:381–392

    Google Scholar 

  • Kai A, Keshk SMAS (1998) Structure of Nascent microbial cellulose V. Influence of number of sulfonate group in fluorescent brightener on crystal structure of microbial cellulose. Polym J 30:996–1000

    Article  CAS  Google Scholar 

  • Karita Y, Hirayama K, Onoe H, Takeuchi S (2014) Micropatterning of bacterial cellulose as degradable substrate for cell culture. In: 2014 IEEE 27th international conference on micro electro mechanical systems (MEMS). pp 518–519

  • Kato N, Sato T, Kato C et al (2007) Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles 11:693–698

    Article  CAS  PubMed  Google Scholar 

  • Keskin Z, Sendemir Urkmez A, Hames EE (2017) Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C 75:1144–1153

    Article  CAS  Google Scholar 

  • Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:1–6

    Article  CAS  Google Scholar 

  • Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1:11006

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T et al. (2004) Introduction. In: Comprehensive cellulose chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–7

  • Kouda T, Naritomi T, Yano H, Yoshinaga F (1997) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. J Ferment Bioeng 84:124–127

    Article  CAS  Google Scholar 

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A et al (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kumbhar JV, Rajwade JM, Paknikar KM (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99:6677–6691

    Article  CAS  PubMed  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335

    Article  CAS  Google Scholar 

  • Laavanya D, Shirkole S, Balasubramanian P (2021) Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. J Clean Prod 295:126454

    Article  CAS  Google Scholar 

  • Lamboni L, Xu C, Clasohm J et al (2019) Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair. Mater Sci Eng C 102:502–510

    Article  CAS  Google Scholar 

  • Lee K-YY, Shamsuddin SR, Fortea-Verdejo M, Bismarck A (2014) Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder. J vis Exp 87:51432

    Google Scholar 

  • Lee KY, Qian H, Tay FH et al (2013) Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors. J Mater Sci 48:367–376

    Article  CAS  Google Scholar 

  • Legendre JY (2009) Assembly comprising a substrate comprising biocellulose, and a powdered cosmetic composition to be brought into contact with the substrate

  • Leitão AF, Faria MA, Faustino AMR et al (2016) A novel small-caliber bacterial cellulose vascular prosthesis: production, characterization, and preliminary in vivo testing. Macromol Biosci 16:139–150

    Article  PubMed  CAS  Google Scholar 

  • Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 7:75–80

    Article  Google Scholar 

  • Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. Arabidopsis Book 12:e0169

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu HF, Feng YH, Yan JK et al (2012) Influence of adding different poly (ethylene glycol) in the biosynthesis of bacterial cellulose. Adv Mater Res 418–420:589–592

    Google Scholar 

  • Luo H, Dong J, Yao F et al (2018a) Layer-by-layer assembled bacterial cellulose/graphene oxide hydrogels with extremely enhanced mechanical properties. Nano Micro Lett 10:1–10

    Article  CAS  Google Scholar 

  • Luo H, Dong J, Zhang Y et al (2018b) Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors. Chem Eng J 334:1148–1158

    Article  CAS  Google Scholar 

  • Luo H, Li W, Yang Z et al (2018c) Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity. J Polym Eng 38:299–305

    Article  CAS  Google Scholar 

  • Luo H, Xie J, Xiong L et al (2019) Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets. Compos Part B Eng 162:484–490

    Article  CAS  Google Scholar 

  • Luo H, Xiong G, Huang Y et al (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110:193–196

    Article  CAS  Google Scholar 

  • Lv P, Zhou H, Mensah A et al (2019) In situ 3D bacterial cellulose/nitrogen-doped graphene oxide quantum dot-based membrane fluorescent probes for aggregation-induced detection of iron ions. Cellulose 26:6073–6086

    Article  CAS  Google Scholar 

  • Ma T, Zhao QQ, Ji KH et al (2014) Homogeneous and porous modified bacterial cellulose achieved by in situ modification with low amounts of carboxymethyl cellulose. Cellulose 21:2637–2646

    Article  CAS  Google Scholar 

  • Martinez-Sanz M, Gidley MJ, Gilbert EP (2016) Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering. Soft Matter 12:1534–1549

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85:228–236

    Article  CAS  Google Scholar 

  • McNamara JTJT, Morgan JLWJLW, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihranyan A (2011) Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460

    Article  CAS  Google Scholar 

  • Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583

    Article  CAS  PubMed  Google Scholar 

  • Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523

    Article  CAS  PubMed  Google Scholar 

  • Mohite BV, Patil SV (2014) Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications. J Biomater Sci Polym Ed 25:2053–2065

    Article  CAS  PubMed  Google Scholar 

  • Molina-Ramírez C, Castro M, Osorio M et al (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH Resistant strain komagataeibacter medellinensis. Materials (basel) 10:639

    Article  CAS  Google Scholar 

  • Mondal MIH, Kai A (2001) Control of the crystal structure of microbial cellulose during nascent stage. J Appl Polym Sci 79:1726–1734

    Article  Google Scholar 

  • Moreira F, Gouveia IC (2015) The role of technology towards a new bacterial-cellulose-based material for fashion design. J Ind Intell Inf 3:168–172

    Google Scholar 

  • Morgan JLW, McNamara JT, Fischer M et al (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531:1–14

    Article  CAS  Google Scholar 

  • Nanollose Ltd (2020) https://nanollose.com

  • Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57:449–453

    Article  CAS  PubMed  Google Scholar 

  • Orelma H, Morales LO, Johansson L-S et al (2014) Affibody conjugation onto bacterial cellulose tubes and bioseparation of human serum albumin. RSC Adv 4:51440–51450

    Article  CAS  Google Scholar 

  • Pa’E N, Hamid NIA, Khairuddin N et al (2014) Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malaysiana 43:767–773

    Google Scholar 

  • Paximada P, Koutinas AA, Scholten E, Mandala IG (2016) Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with Common thickeners. Food Hydrocoll 54:245–254

    Article  CAS  Google Scholar 

  • Portela R, Leal CR, Almeida PL, Sobral RG (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12:586–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prathapan R, Ghosh AK, Knapp A et al (2020) In situ alignment of bacterial cellulose using wrinkling. ACS Appl Bio Mater 3:7898–7907

    Article  CAS  PubMed  Google Scholar 

  • Putra A, Kakugo A, Furukawa H et al (2008a) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer (guildf) 49:1885–1891

    Article  CAS  Google Scholar 

  • Putra A, Kakugo A, Furukawa H et al (2008b) Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym J 40:137–142

    Article  CAS  Google Scholar 

  • Putra A, Kakugo A, Furukawa H, Gong JP (2009) Orientated bacterial cellulose culture controlled by liquid substrate of silicone oil with different viscosity and thickness. Polym J 41:764–770

    Article  CAS  Google Scholar 

  • Rahman MM, Netravali AN (2016) Aligned bacterial cellulose arrays as “green” nanofibers for composite materials. ACS Macro Lett 5:1070–1074

    Article  CAS  Google Scholar 

  • Ramana KV, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16:245–248

    Article  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rühs PA, Storz F, López Gómez YA et al (2018) 3D bacterial cellulose biofilms formed by foam templating. NPJ Biofilms Microbiomes 4:1–6

    Article  CAS  Google Scholar 

  • Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723

    Article  CAS  PubMed  Google Scholar 

  • Sakairi N, Asano H, Ogawa M et al (1998) A method for direct harvest of bacterial cellulose filaments during continuous cultivation of Acetobacter xylinum. Carbohydr Polym 35:233–237

    Article  CAS  Google Scholar 

  • Sano MB, Rojas AD, Gatenholm P, Davalos RV (2010) Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Ann Biomed Eng 38:2475–2484

    Article  PubMed  Google Scholar 

  • Swazey JM, Madison N (2010) Methods of improve the compatibility and efficiency of powdered versions of microbirous cellulose

  • Santos SM, Carbajo JM, Villar JC (2013) The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gluconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration. BioResources 8:3630–3645

    Article  Google Scholar 

  • Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Ul-islam M, Khattak WA et al (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  CAS  PubMed  Google Scholar 

  • Shezad O, Khan S, Khan T, Park JK (2009) Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J Chem Eng 26:1689–1692

    Article  CAS  Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  • Shin-ping L, Hsieh S, Chen K et al (2014) Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 21:835–844

    Article  CAS  Google Scholar 

  • Si H, Luo H, Xiong G et al (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35:1706–1711

    Article  CAS  PubMed  Google Scholar 

  • Silvestre AJD, Freire CSR, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 11:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Singhsa P, Narain R, Manuspiya H (2018) Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose 25:1571–1581

    Article  CAS  Google Scholar 

  • Song J, Babayekhorasani F, Spicer PT (2019) Soft bacterial cellulose microcapsules with adaptable shapes. Biomacromol 20:4437–4446

    Article  CAS  Google Scholar 

  • Spaic M, Small DP, Cook JR, Wan W (2014) Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose 21:1529–1540

    Article  CAS  Google Scholar 

  • Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383

    Article  CAS  Google Scholar 

  • Tabaii MJ, Emtiazi G (2016) Comparison of bacterial cellulose production among different strains and fermented media. Appl Food Biotechnol 3:35–41

    CAS  Google Scholar 

  • Tantratian S, Tammarate P, Krusong W et al (2005) Effect of dissolved oxygen on cellulose production by Acetobacter sp. J Sci Res Chulalongkorn Univ 30:179–186

    CAS  Google Scholar 

  • The egg yolks (2012) FABULA bio fiber nano-cellulose mask. http://www.theeggyolks.com/2011/12/fabula-bio-fiber-nano-cellulose-mask.html

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe KJ, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74

    Article  CAS  Google Scholar 

  • Tournilhac F, Lorant R (2003) Composition in the form of an oil-in-water emulsion containing cellulose fibrils, and its uses, especially cosmetic uses

  • Tsouko E, Kourmentza C, Ladakis D et al (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603

    Article  CAS  Google Scholar 

  • Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314

    Article  CAS  Google Scholar 

  • Urbina L, Guaresti O, Requies J et al (2018) Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydr Polym 193:362–372

    Article  CAS  PubMed  Google Scholar 

  • Vadanan SV (2020) Bacterial cellulose: from culturing to the development of functional materials. Nanyang Technological University, Singapore

    Google Scholar 

  • Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554

    Article  CAS  Google Scholar 

  • Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218

    Article  CAS  Google Scholar 

  • Wang S, Jiang F, Xu X et al (2017) Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 29:1–8

    Google Scholar 

  • Wang S, Li TT, Chen C et al (2018) Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv Funct Mater 28:1707491

    Article  CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH et al (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504

    Article  CAS  Google Scholar 

  • Wu Z-Y, Liang H-W, Chen L-F et al (2016) Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc Chem Res 49:96–105

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S, Ishihara M, Sugiyama J (2000) Structural modification of bacterial cellulose. Cellulose 7:213–225

    Article  CAS  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N et al (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    Article  CAS  Google Scholar 

  • Yan L, Jia SR, Zhong C et al (2012) The effect of growth, migration and bacterial cellulose synthesis of Gluconacetobacter xylinus in presence of direct current electric field condition. Adv Chem Eng II 550:1108–1113

    Google Scholar 

  • Yan Z, Chen S, Wang H et al (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydr Res 343:73–80

    Article  CAS  PubMed  Google Scholar 

  • Yodsuwan N, Owatworakit A, Ngaokla A et al. (2012) Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. In: 1st Mae Fah Luang university international conference. pp 1–6

  • Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224

    Article  CAS  Google Scholar 

  • Zhang CJ, Wang L, Zhao JC, Zhu P (2011) Effect of drying methods on structure and mechanical properties of bacterial cellulose films. Adv Mater Res 239–242:2667–2670

    Google Scholar 

  • Zheng L, Li S, Luo J, Wang X (2020) Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Front Bioeng Biotechnol 8:1–15

    Article  CAS  Google Scholar 

  • Zhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Pujitha Illa.

Ethics declarations

Conflict of interests

Authors have no conflict of interest to declare.

Consent for publication

All authors agreed to publish the review in cellulose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illa, M.P., Peddapapannagari, K., Raghavan, S.C. et al. In situ tunability of bacteria derived hierarchical nanocellulose: current status and opportunities. Cellulose 28, 10077–10097 (2021). https://doi.org/10.1007/s10570-021-04180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04180-3

Keywords

Navigation