Skip to main content
Log in

Influence of different oxidizing systems on cellulose oxidation level: introduced groups versus degradation model

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bleached cotton yarns were oxidized by potassium periodate and TEMPO-mediated oxidation systems, with different concentrations and treatment time, to obtain aldehyde and carboxyl oxy-cellulose with different oxidation levels. Oxidized celluloses were further treated with sodium chlorite to convert the created aldehyde to carboxyl groups. The oxidation level was evaluated by assessing the amount of introduced aldehyde and carboxyl groups, the changes in surface morphology and incurred degradation. Functional groups were determined by titration methods, while surface morphology by FTIR-ATR and SEM analyses. Degradation was analysed by determining the mechanical properties, degree of polymerization, alkali solubility and whiteness stability of the cotton samples. It has been established that a properly selected oxidation system, with appropriate working conditions, can provide satisfactory results for achieving low, medium and extensively oxidized celluloses, with a defined degradation profile. For a short treatment time, a higher oxidation level could be achieved by potassium periodate and TEMPO-mediated oxidation with sodium bromide, while by using the bromide-free TEMPO system a longer time was necessary to reach the same oxidation level. The type and oxidation level of the obtained oxy-celluloses influenced their mechanical properties, degree of polymerization, alkaline and whiteness stability. Low-level oxidized celluloses are suitable for producing stable, long-lasting materials with high added value, while extensively oxidized ones are more appropriate for developing disposable products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abo El-Ola AMS, Moharam EM, Eladwi MM, El-Bendary AM (2014) Optimum conditions for polyamide fabric modification by protease enzyme produced by Bacillus sp. Indian J Fibre Text Res 39:65–71

    CAS  Google Scholar 

  • Ashton HW, Moser EC (1968) Oxidized cellulose product and method for preparing the same. United States Patent No. US3364200A

  • ASTM D 4243-16 (2016) Standard test method for measurement of average viscometric degree of polymerization of new and aged electrical papers and boards. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA

  • Bragd LP, Besemer CA, van Bekkum H (2000) Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-d-glucopyranoside. Carbohydr Res 328:355–363

    Article  CAS  Google Scholar 

  • Brodin WB, Theliander H (2012) Absorbent materials based on kraft pulp: preparation and material characterization. BioResources 7:1666–1683

    Article  Google Scholar 

  • Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscosimetric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99–107

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006a) Viscosimetric determination of dialdehyde content in periodate oxycellulose Part II. Topochemistry of oxidation. Cellulose 13:571–579

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Luciano G, Franceschi E (2006b) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40:177–183

    Article  CAS  Google Scholar 

  • Carrasco-Chinga G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29:423–432

    Article  Google Scholar 

  • Coseri S (2017) Cellulose: to depolymerize… or not to? Biotechnol Adv 35:251–266

    Article  CAS  Google Scholar 

  • Coseri S, Biliuta G, Simionescu B, Kleinschek-Karin S, Ribitsch V, Harabagiu V (2013) Oxidized cellulose-survey of the most recent achievements. Carbohydr Polym 93:207–215

    Article  CAS  Google Scholar 

  • Coseri S, Biliuta G, Zemljic LF, Srndovic JS, Larsson PT, Strnad S, Kreze T, Naderi A, Lindstrom T (2015) One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC Adv 104:85889–85897

    Article  Google Scholar 

  • Coseri S, Biliuta G, Simionescu B (2018) Selective oxidation of cellulose, mediated by N-hydroxyphthalimide, under a metal-free environment. Polym Chem 9:961–967

    Article  CAS  Google Scholar 

  • Dai L, Dai H, Yuan Y, Sun X, Zhu Z (2011) Effect of TEMPO oxidation system on kinetic constants of cotton fibers. BioResources 6:2619–2631

    CAS  Google Scholar 

  • Diankova MSV, Doneva DM (2009) Analysis of oxycellulose obtained by partial oxidation with different reagents. Bulg Chem Commun 41:391–396

    CAS  Google Scholar 

  • EN ISO 2062 (2009) Textiles - Yarns from packages - Determination of single-end breaking force and elongation at brake using constant rate of extension (CRE) tester (ISO 2062:2009). International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    Article  CAS  Google Scholar 

  • Fraschini C, Chauve G, Bouchard J (2017) TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24:2775–2790

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon RM (2006) TEMPO-mediated surface oxidation of cellulose whisker. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles template by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromol 10:2199–2209

    Google Scholar 

  • Ige OO, Umoru EL, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 2012:1–20

    Article  Google Scholar 

  • Inamochi T, Funahashi R, Nakamura Y, Saito T, Isogai A (2017) Effect of coexisting salt on TEMPO-mediated oxidation of wood cellulose for preparation of nanocellulose. Cellulose 24:4097–4101

    Article  CAS  Google Scholar 

  • ISO 105-J02 (1999) Textiles - Tests for colour fastness - part J02: Instrumental assessment of relative whiteness. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Isogai A, Hänninen T, Fujisawa S, Saito T (2018) Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci 86:122–148

    Article  CAS  Google Scholar 

  • Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78:240–246

    Article  CAS  Google Scholar 

  • Jin LQ, Sun QC, Xu QH, Xu YJ (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour Technol 197:348–355

    Article  CAS  Google Scholar 

  • Kanth SV, Ramaraj A, Rao RJ, Nair BU (2009) Stabilization of type I collagen using dialdehyde cellulose. Process Biochem 44:869–874

    Article  CAS  Google Scholar 

  • Kim YJ, Choi MH (2014) Cationization of periodate-oxidized cotton cellulose with choline chloride. Cellul Chem Technol 48:25–32

    CAS  Google Scholar 

  • Kolarova K, Vosmanska V, Rimpelova S, Svorcik V (2013) Effect on plasma treatment on cellulose fiber. Cellulose 20:953–961

    Article  CAS  Google Scholar 

  • Kramer A, Milanović J, Korica M, Nikolić T, Asanović K, Kostić M (2014) Influence of structural changes induced by oxidation and addition of silver ions on electrical properties of cotton yarn. Cellul Chem Technol 48:189–197

    Google Scholar 

  • Kumar V (2003) Powdered oxidized cellulose. United States Patent No. US6627749B1

  • Kumari S, Mankotia D, Chauhan GS (2016) Crosslinked cellulose dialdehyde for congo red removal from its aqueous solutions. J Environ Chem Eng 4:1126–1136

    Article  CAS  Google Scholar 

  • Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84:881–886

    Article  CAS  Google Scholar 

  • Luo CC, Wang H, Chen Y (2015) Progress in modification of cellulose and application. Chem Ind Eng Prog 34:767–773

    CAS  Google Scholar 

  • Marković D, Korica M, Kostić M, Radovanović Ž, Šaponjić Z, Mitrić M, Radetić M (2018) In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics. Cellulose 25:829–841

    Article  Google Scholar 

  • Mishra PS, Thirree J, Manent SA, Chabot B, Daneault C (2011) Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables. BioResources 6:121–143

    CAS  Google Scholar 

  • Mishra PS, Manent SA, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose-various options utilizing ultrasound. BioResources 7:422–436

    CAS  Google Scholar 

  • Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic P, Skundric P (2010) Sodium periodate oxidized cotton yarns as carrier for immobilization of trypsin. Carbohydr Polym 82:976–981

    Article  CAS  Google Scholar 

  • Nikolic T, Korica M, Milanovic J, Kramar A, Petronijevic Ƶ, Kositc M (2017) TEMPO-oxidized cotton as a substrate for trypsin immobilization: impact of functional groups on proteolytic activity and stability. Cellulose 24:1863–1875

    Article  CAS  Google Scholar 

  • Perlin AS (2006) Glycol-cleavage oxidation. Adv Carbohydr Chem Biochem 60:183–250

    Article  CAS  Google Scholar 

  • Pietrucha K, Safandowska M (2015) Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem 50:2015–2111

    Article  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56:227–232

    Article  CAS  Google Scholar 

  • Sang X, Qin C, Tong Z, Kong S, Jia GW, Liu X (2017) Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 24:2415–2425

    Article  CAS  Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of cellourinic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  • Sivakova B, Beganskienė A, Kareiva A (2008) Investigation of damaged paper by ink corrosion. Mater Sci (MEDŽIAGOTYRA) 14:51–54

    Google Scholar 

  • Stilwell LR, Whitmore JE, Saferstein GL (1996) Calcium-modified oxidized cellulose hemostat. United States Patent No. US005484913A

  • Strand S, Šauper O, Jazbec A, Kleinschek SK (2008) Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan. Text Res J 78:390–398

    Article  Google Scholar 

  • Sun B, Gu C, Ma J, Liang B (2005) Kinetic study on TEMPO-mediated selective oxidation of regenerated cellulose. Cellulose 12:59–66

    Article  CAS  Google Scholar 

  • Tang A, Zhang H, Chen G, Xie G, Liang W (2005) Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrason Sonochem 12:467–472

    Article  CAS  Google Scholar 

  • Tang Z, Li W, Lin X, Xiao H, Miao Q, Huang L, Chen L, Wu H (2017) TEMPO-oxidation cellulose with high degree of oxidation. Polymers 9:421–430

    Article  Google Scholar 

  • TAPPI T 212 om-02 (2002) One percent sodium hydroxide solubility of wood and pulp. Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA

    Google Scholar 

  • Tosh NB, Saikia NC (1997) Mark–Houwink–Sakurada constants for cellulose-paraformaldehyde/dimethyl sulphoxide system. Indian J Chem Technol 4:247–250

    CAS  Google Scholar 

  • Toshikj E, Jordanov I, Dimova V, Mangovska B (2016) The influence of non-selective oxidation on differently pre-treated cotton yarns. Mater Sci (MEDŽIAGOYRA) 22:429–434

    Google Scholar 

  • Toshikj E, Jordanov I, Dimova V, Mangovska B (2017) Influence of various pre-treatment processes on selective oxidation of cotton yarns. AATCC J Res 4:22–28

    Article  CAS  Google Scholar 

  • Xu M, Dai H, Sun X, Wang S, Wu W (2012) Influence of buffer solution on TEMPO-mediated oxidation. BioResources 7:1633–1642

    Google Scholar 

  • Zemljic-Fras L, Sauperl O, Kreze T, Strnad S (2013) Characterization of regenerated cellulose fibers antimicrobial functionalized by chitosan. Text Res J 83:185–196

    Article  Google Scholar 

  • Zhang L, Ge H, Xu M, Cao J, Dai Y (2017) Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24:2287–2298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Jordanov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All appropriate international, national and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Supplementary material 2 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toshikj, E., Tarbuk, A., Grgić, K. et al. Influence of different oxidizing systems on cellulose oxidation level: introduced groups versus degradation model. Cellulose 26, 777–794 (2019). https://doi.org/10.1007/s10570-018-2133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2133-4

Keywords

Navigation