Skip to main content
Log in

Viscometric determination of dialdehyde content in periodate oxycellulose Part II. Topochemistry of oxidation

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The kinetics of periodate oxidation of cellulose was followed through the alkaline degradation of the dialdehyde groups by measuring the viscometric degree of polymerisation and the alkali consumption. The obtained results show that a fast but limited attack of periodate occurs in the amorphous region of cellulose, causing the decrease of degree of polymerisation to its levelling-off value. The alkali consumption indicates at least two further slower reactions, that lead to the asymptotic complete oxidation of cellulose units. With the pseudo first-order approximation, the oxidation half-time of these three reactions can be calculated, corresponding to 1.2, 20 and 854 h respectively. In spite of the high oxidation of the analysed samples (up to about 46%), the residue after alkaline degradation shows a relatively high value of degree of polymerisation rather than the narrow molecular weight distribution of oligomers expected from a random oxidation, thus indicating that periodate oxidises cellulose in isolated domains. The sequence of analyses over the same sample utilised in this work (titrimetry, weight loss and viscometry), performed at room temperature in mild conditions, makes it possible to investigate the topochemistry of oxidation of paper and textiles of historic and artistic value with microdistructive techniques on a single, very small fragment of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α:

fractional weight loss

DAU:

dialdehyde units

DP:

viscosity average degree of polymerisation (with suffixes ac – acidity degraded samples; hmw – high molecular weight fraction; lmw – low molecular weight fraction; ox – oxidised samples; oxred – oxidised and reduced samples)

S:

number of β-alkoxy scissions

t 0.5 :

oxidation half-time

References

  • Aimin T., Hongwey Z., Gang C., Guohui X. and Wenzhi L. (2005). Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrason. Sonochem. 12(6):467–472

    Article  CAS  Google Scholar 

  • Bicchieri M., Bella M. and Sementilli F.M. (1999). A quantitative measure of borane tert-butylamine complex effectiveness in carbonyl reduction of aged papers. Restaurator 20:22–29

    CAS  Google Scholar 

  • Calvini P., Conio G., Lorenzoni M., and Pedemonte E. (2004). Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11: 99–107

    Article  CAS  Google Scholar 

  • Calvini P. 2005. The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12: 445–447

    Google Scholar 

  • Calvini P., Gorassini A., Luciano G., and Franceschi E. 2006. FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vibr. Spectrosc. 40(2): 177–183

    Google Scholar 

  • Casu B., Naggi A., Torri G., Allegra G., Meille S.V., Cosani A. and Terbojevich M. (1985). Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18:2762–2767

    Article  CAS  Google Scholar 

  • Chavan V.B., Sarwade B.D. and Varma A.J. (2002). Morphology of cellulose and oxidised cellulose in powder form. Carbohydr. Polym. 50:41–45

    Article  CAS  Google Scholar 

  • Guthrie J.P. (1975). Carbonyl addition reactions: factors affecting the hydrate-hemiacetal and hemiacetal-acetal equilibrium constants. Can. J. Chem. 53:898–906

    Article  CAS  Google Scholar 

  • Herdan G. (1953). Fitting of polymer distributions of molecular weight by the method of moments. J. Polym. Sci. 10(1):1–18

    Article  CAS  Google Scholar 

  • Hofreiter B.T., Alexander B.H. and Wolff I.A. (1955). Rapid estimation of dialdehyde content of periodate oxystarch through quantitative alkali consumption. Anal. Chem. 27(12):1930–1931

    Article  CAS  Google Scholar 

  • Ishak M.F. and Painter T. (1971). Formation of inter-residue hemiacetals during the oxidation of polysaccharides by periodate ion. Acta Chem. Scand. 25(10):3875–3877

    CAS  Google Scholar 

  • Kim U.-J., Kuga S., Wada M., Okano T. and Kondo T. (2000). Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492

    Article  CAS  Google Scholar 

  • Kim U.-J. and Kuga S. (2000). Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose 7:287–297

    Article  CAS  Google Scholar 

  • Kim U.-J. and Kuga S. (2001). Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Termochimica Acta 369:79–85

    Article  CAS  Google Scholar 

  • Kim U.-J., Wada M. and Kuga S. (2004). Solubilization of dialdehyde cellulose by hot water. Carboydr. Polym. 56:7–10

    Article  CAS  Google Scholar 

  • Maekawa E. and Koshijima T. (1991). Preparation and structural consideration of nitrogen-containing derivatives obtained from dialdehyde celluloses. J. Appl. Polym. Sci. 42:169–178

    Article  CAS  Google Scholar 

  • Margutti S., Conio G., Calvini P. and Pedemonte E. (2001). Hydrolytic and oxidative degradation of paper. Restaurator 22(2):67–83

    Article  CAS  Google Scholar 

  • Mašura V. (1974). Preparation of alkali cellulose with suitable DP without ageing. Cellulose Chem. Technol. 8:21–25

    Google Scholar 

  • O’Meara D. and Richards G.N. 1958. Alkaline degradation of polysaccharides. Part V. Periodate oxycellulose. J. Chem. Soc. (London) Paper No 909: 4504–4508

  • Painter T. and Larsen B. (1970). Transient hemiacetal structures formed during the periodate oxidation of xylan. Acta Chem. Scand. 24:2366–2378

    Article  CAS  Google Scholar 

  • Pommerening K., Rein H., Bertram D. and Müller R. (1992). Estimation of dialdehyde groups in 2,3 dialdehyde bead-cellulose. Carbohydr. Res. 233:219–223

    Article  CAS  Google Scholar 

  • Potthast A., Röhrling J., Rosenau T., Bogards A., Sixta H. and Kosma P. (2003). A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4:743–749

    Article  CAS  Google Scholar 

  • Princi E., Vicini S., Pedemonte E., Proietti N., Capitani D., Segre A.L., D’Orazio L., Gentile G., Polcaro C., and Martuscelli E. (2004). Physical and chemical characterization of cellulose based textiles modified by periodate oxidation. Macromol. Symp. 218:343–352

    CAS  Google Scholar 

  • Rahn K. and Heinze TH. (1998). New cellulosic polymers by subsequent modification of 2,3-dialdehyde cellulose. Cellulose Chem. Technol. 32:173–183

    CAS  Google Scholar 

  • Rowland S.P. and Cousins E.R. (1966). Periodate oxidative decrystallization of cotton cellulose. J. Polym. Sci. part A-1 4:793–799

    CAS  Google Scholar 

  • Sharples A. (1954). The hydrolysis of cellulose. Part II. Acid sensitive linkages in Egyptian cotton. J. Polym. Sci. 14:95–104

    Article  CAS  Google Scholar 

  • Sihtola H. (1960). Chemical properties of modified celluloses. Makromol. Chem. 35(1):250–265

    Article  CAS  Google Scholar 

  • Sihtola H., Neimo L. and Sumiala R. (1963). Classification of carbonyl groups in cellulose on the basis of their reaction rates at oximation. J. Polym. Sci. part C 2:289–310

    Google Scholar 

  • Tiziani S., Sussich F. and Cesàro A. (2003). The kinetics of periodate oxidation of carbohydrates 2. Polymeric substrates. Carbohydr. Res. 338:1083–1085

    Article  CAS  Google Scholar 

  • Varma A.J. and Chavan V.B. (1995). A study of crystallinity changes in oxidised celluloses. Polym. Degrad. Stabil. 49:245–250

    Article  CAS  Google Scholar 

  • Varma A.J., Chavan V.B., Rajmohanan P.R. and Ganapathy S. (1997). Some observations on the high-resolution solid-state CP-MAS 13C-NMR spectra of periodate-oxidised cellulose. Polym. Degrad. Stab. 58:257–260

    Article  CAS  Google Scholar 

  • Varma A.J. and Kulkarni M.P. (2002). Oxidation of cellulose under controlled conditions. Polym. Degrad. Stab. 77:25–27

    Article  CAS  Google Scholar 

  • Veelaert S., de Wit D. and Tournois H. (1994). An improved kinetic model for the periodate oxidation of starch. Polymer 35 (23):5091–5097

    Article  CAS  Google Scholar 

  • Whitmore P.M. and Bogaard J. (1994). Determination of the cellulose scission route in the hydrolytic and oxidative degradation of paper. Restaurator 15:26–45

    CAS  Google Scholar 

  • Whitmore P.M. and Bogaard J. (1995). The effect of oxidation on the subsequent oven aging of filter paper. Restaurator 16(1995):10–30

    Article  CAS  Google Scholar 

  • Zhbankov R.G. (1966). Infrared Spectra of Cellulose and its Derivatives. Consultants Bureau/Plenum Publishing Co., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Calvini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvini, P., Conio, G., Princi, E. et al. Viscometric determination of dialdehyde content in periodate oxycellulose Part II. Topochemistry of oxidation. Cellulose 13, 571–579 (2006). https://doi.org/10.1007/s10570-005-9035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-005-9035-y

Keywords

Navigation