Skip to main content
Log in

TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals were successfully oxidized with sodium hypochlorite using catalytic amounts of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical at pH 10 in water. Carboxylate groups were selectively introduced at the surface of the crystals up to a total acid content of 1200 mmol kg−1 without damaging the integrity of the crystals. The final acid content can easily be tuned by varying the amount of oxidant introduced. The effect of temperature, the quantity of oxidant and co-catalyst on the reaction kinetics were studied. Several methods were used for the characterization of the oxidized material like field emission scanning electron microscopy, diffuse reflectance infrared spectroscopy and thermogravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromol 11:3652–3659

    Article  CAS  Google Scholar 

  • Bragd PL, Besemer AC, van Bekkum H (2000) Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl-alpha-D-glucopyranoside. Carbohydr Res 328:355–363

    Article  CAS  Google Scholar 

  • Bragd PL, Besemer AC, van Bekkum H (2002) Selective oxidation of carbohydrates by 4-AcNH-TEMPO/peracid systems. Carbohydr Polym 49:397–406

    Article  CAS  Google Scholar 

  • Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6, tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15:819–830

    Article  CAS  Google Scholar 

  • Da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromol 4:1417–1425

    Article  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1994) Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pays Bas 113:165–166

    Article  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1995a) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98

    Article  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1995b) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqeous solution. Kinetics and mechanism. Tetrahedron 51:8023–8032

    Article  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H, van Dijk JAPP, Smit JAM (1996) TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains. Macromolecules 29:6541–6547

    Article  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082. doi:10.1021/la950133b

    Article  CAS  Google Scholar 

  • Fraschini C, Vignon M (2000) Selective oxidation of primary hydroxyl groups of β-cyclodextrins mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). Carbohydr Res 328:585–589

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwaka T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier properties of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508

    Article  CAS  Google Scholar 

  • Habibi Y, Vignon M (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Inokuchi T, Matsumoto S, Nishiyama T, Torii S (1990) A selective and efficient method for alcohol oxidations mediated by N-oxoammonium salts in combination with sodium bromite. J Org Chem 55:462–466

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  • Kato Y, Matsuo R, Isogai A (2002) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51:69–75

    Article  Google Scholar 

  • Kato Y, Kaminaga JI, Matsuo R, Isogai A (2005) Oxygen permeability and biodegradability of polyuronic acids prepared from polysaccharides by TEMPO-mediated oxidation. J Polym Environ 13:261–266

    Article  CAS  Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Paperstidn 6:48–53

    Google Scholar 

  • Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11:1696–1700

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspensions. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on the chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61:414–419

    Article  CAS  Google Scholar 

  • Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fraction in the oxidized products. Carbohydr Polym 65:435–440

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Fukuzumi H, Kimura T, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56:227–232

    Article  CAS  Google Scholar 

  • Semmelhack MF, Schmid CR, Cortes DA, Chou CS (1984) Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion. J Am Chem Soc 106:3374–3376

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Sun B, Gu C, Ma J, Liang B (2005) Kinetic study on TEMPO-mediated oxidation of regenerated cellulose. Cellulose 12:59–66

    Article  CAS  Google Scholar 

  • Tahiri C, Vignon M (2000) TEMPO-oxidation of cellulose: synthesis and characterization of polyglucuronans. Cellulose 7:177–188

    Article  CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995) Thermal properties of oxidized cellulose. Cellulose 2:41–49

    CAS  Google Scholar 

  • Zhao M, Li J, Mano E, Song Z, Tschaen DM, Grabowski EJJ, Reider PJ (1999) Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. J Org Chem 64:2564–2566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the ArboraNano Network, the Transformative Technology Program from the Government of Canada and the Ministère des Ressources Naturelles et de la Faune du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Fraschini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraschini, C., Chauve, G. & Bouchard, J. TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24, 2775–2790 (2017). https://doi.org/10.1007/s10570-017-1319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1319-5

Keywords

Navigation