Skip to main content
Log in

Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO) can selectively oxidize primary hydroxyl groups of cellulose to carboxyl groups. However, the depolymerization also occurs during the process. The kinetics and mechanism of carboxyl group formation on the surface of cellulose fiber oxidized by TEMPO/NaClO2/NaClO were discussed. The oxidization and depolymerization of cellulose occurred simultaneously, according to analysis of FTIR and 13C CP/MAS NMR. The glucuronic acid and some small molecular fragments, formed by hydrolysis or β-elimination during the oxidation, are also discussed. The crystallization index increased and crystal size decreased, as shown by X-ray analysis. The degradation steps in the TEMPO/NaClO2/NaClO system was discussed, according to carbon conversion analyzed by 13C CP/MAS NMR. The oxidation of cellulose can be described well by the kinetics model established based on the degradation of cellulose. It was found that temperature is one of the key parameters for controlling the oxdation and degradation level. The possible mechanism for oxidation of cellulose was composed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Åkerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578. doi:10.1016/j.carres.2003.11.012

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Luciano G, Franceschi E (2006) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40:177–183. doi:10.1016/j.vibspec.2005.08.004

    Article  CAS  Google Scholar 

  • Coseri S (2017) Cellulose: to depolymerize… or not to? Biotechnol Adv 35:251–266. doi:10.1016/j.biotechadv.2017.01.002

    Article  CAS  Google Scholar 

  • Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93:207–215. doi:10.1016/j.carbpol.2012.03.086

    Article  CAS  Google Scholar 

  • da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425

    Article  Google Scholar 

  • Dai L, Dai H, Yuan Y, Sun X, Zhu Z (2011) Effect of TEMPO oxidation system on kinetic constants of cotton fibers. BioResources 6:2619–2631

    CAS  Google Scholar 

  • Dang Z, Zhang J, Ragauskas AJ (2007) Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 70:310–317. doi:10.1016/j.carbpol.2007.04.014

    Article  CAS  Google Scholar 

  • de Nooy AE, Besemer AC, van Bekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism. Tetrahedron 51:8023–8032

    Article  Google Scholar 

  • deNooy AEJ, Besemer AC, vanBekkum H, vanDijk J, Smit JAM (1996) TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains. Macromolecules 29:6541–6547. doi:10.1021/ma960492t

    Article  CAS  Google Scholar 

  • Elboutachfaiti R, Delattre C, Petit E, Michaud P (2011) Polyglucuronic acids: structures, functions and degrading enzymes. Carbohydr Polym 84:1–13. doi:10.1016/j.carbpol.2010.10.063

    Article  CAS  Google Scholar 

  • El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10

    Article  CAS  Google Scholar 

  • Foston M (2014) Advances in solid-state NMR of cellulose. Curr Opin Biotechnol 27:176–184. doi:10.1016/j.copbio.2014.02.002

    Article  CAS  Google Scholar 

  • Fujisawa S, Isogai T, Isogai A (2010) Temperature and pH stability of cellouronic acid. Cellulose 17:607–615. doi:10.1007/s10570-010-9407-9

    Article  CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. doi:10.1016/j.carbpol.2010.12.029

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi:10.1016/j.eurpolymj.2007.05.038

    Article  CAS  Google Scholar 

  • Hiraoki R, Ono Y, Saito T, Isogai A (2015) Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 16:675–681. doi:10.1021/bm501857c

    Article  CAS  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2009) Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 78:330–335. doi:10.1016/j.carbpol.2009.04.012

    Article  CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55. doi:10.1023/a:1009236932134

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164. doi:10.1023/A:1009208603673

    Article  CAS  Google Scholar 

  • Isogai T, Yanagisawa M, Isogai A (2009) Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose 16:117–127. doi:10.1007/s10570-008-9245-1

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Johansson EE, Lind J (2005) Free radical mediated cellulose degradation during high consistency ozonation. J Wood Chem Technol 25:171–186. doi:10.1080/02773810500191773

    Article  CAS  Google Scholar 

  • Kekäläinen K, Liimatainen H, Illikainen M, Maloney TC, Niinimäki J (2014) The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. Cellulose 21:1163–1174. doi:10.1007/s10570-014-0210-x

    Article  Google Scholar 

  • Kéri M, Palcsu L, Túri M, Heim E, Czébely A, Novák L, Bányai I (2015) 13C NMR analysis of cellulose samples from different preparation methods. Cellulose 22:2211–2220. doi:10.1007/s10570-015-0642-y

    Article  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511. doi:10.1021/ja010704o

    Article  CAS  Google Scholar 

  • Lai C, Zhang S, Sheng L, Liao S, Xi T, Zhang Z (2013) TEMPO-mediated oxidation of bacterial cellulose in a bromide-free system. Colloid Polym Sci 291:2985–2992

    Article  CAS  Google Scholar 

  • Li L, Zhao S, Zhang J, Zhang ZX, Hu H, Xin Z, Kim JK (2013) TEMPO-mediated oxidation of microcrystalline cellulose: influence of temperature and oxidation procedure on yields of water-soluble products and crystal structures of water-insoluble residues. Fibers Polym 14:352–357. doi:10.1007/s12221-013-0352-8

    Article  CAS  Google Scholar 

  • Liu X, Wang L, Song X, Song H, Zhao JR, Wang S (2012) A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate. Carbohydr Polym 90:218–223

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  • Redouan E, Emmanuel P, Michelle P, Bernard C, Josiane C, Cédric D (2011) Evaluation of antioxidant capacity of ulvan-like polymer obtained by regioselective oxidation of gellan exopolysaccharide. Food Chem 127:976–983. doi:10.1016/j.foodchem.2011.01.067

    Article  CAS  Google Scholar 

  • Revol J, Dietrich A, Goring D (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65:1724–1725

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A 289:219–225. doi:10.1016/j.colsurfa.2006.04.038

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. doi:10.1021/bm2017542

    Article  CAS  Google Scholar 

  • Sun B, Gu C, Ma J, Liang B (2005) Kinetic study on TEMPO-mediated selective oxidation of regenerated cellulose. Cellulose 12:59–66

    Article  CAS  Google Scholar 

  • Sun Y, Zhuang J, Lin L, Ouyang P (2009) Clean conversion of cellulose into fermentable glucose. Biotechnol Adv 27:625–632. doi:10.1016/j.biotechadv.2009.04.023

    Article  CAS  Google Scholar 

  • Sun X-F, Jing Z, Fowler P, Wu Y, Rajaratnam M (2011) Structural characterization and isolation of lignin and hemicelluloses from barley straw. Ind Crops Prod 33:588–598. doi:10.1016/j.indcrop.2010.12.005

    Article  CAS  Google Scholar 

  • Takaichi S, Isogai A (2013) Oxidation of wood cellulose using 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO catalyst in NaBr/NaClO system. Cellulose 20:1979–1988. doi:10.1007/s10570-013-9932-4

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO(2) systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234. doi:10.1016/j.ijbiomac.2012.05.016

    Article  CAS  Google Scholar 

  • Tsuguyuki S, Masayuki H, Naoyuki T, Akira I (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56:227–232. doi:10.1007/s10086-009-1092-7

    Article  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49:1491–1496

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129. doi:10.1016/S0008-6215(98)00236-5

    Article  CAS  Google Scholar 

  • Zhan H, Liu Q, Chen J, Han Q, Ban W (2010) Pulping principles and engineering. China Light Industry Press, Beijing

    Google Scholar 

  • Zhao M, Li J, Mano E, Song Z, Tschaen DM, Grabowski EJ, Reider PJ (1999) Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. J Org Chem 64:2564–2566

    Article  CAS  Google Scholar 

  • Zhou Z, Jaaskelainen A, Vuorinen T (2008) Oxidation of cellulose and carboxylic acids by hypochlorous acid: kinetics and mechanisms. J Pulp Pap Sci 34:212

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (21366005), Guangxi Natural Science Foundation (2013GXNSFFA019005, 2014GXNSFBA118093), Scientific Research Foundation of the Guangxi University (XJZ130366, XJZ160945, XBZ160091) and Guangxi Sugar Industry Collaborative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, X., Qin, C., Tong, Z. et al. Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 24, 2415–2425 (2017). https://doi.org/10.1007/s10570-017-1279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1279-9

Keywords

Navigation