Skip to main content
Log in

Photophysical and Catalytic Properties of Silica Supported Early Transition Metal Oxides Relevant for Photocatalytic Applications

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper the applicability of selected silica-supported early transition metal oxides in photocatalysis is discussed. The catalytic properties of highly dispersed transition metal oxides often differ strongly from their corresponding bulk material. The structural and photophysical properties can often be linked to those changes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reprinted with permission from Bahnemann et al. [7]. Copyright (1987) American Chemical Society)

Fig. 3
Fig. 4

(Reprinted with permission from Ross-Medgaarden et al. [162]. Copyright (2009) American Chemical Society)

Fig. 5

(Reprinted with permission from Nitsche et al. [37]. Copyright (2016) American Chemical Society)

Fig. 6

(Adapted with permission from Yamashita and Anpo, Ref. [38], Copyright 2004, Elsevier Ltd.)

Fig. 7

(Reprinted with permission from Nitsche et al. [37]. Copyright (2016) American Chemical Society)

Fig. 8

(Reprinted with permission from Gao et al. [81]. Copyright (2000) American Chemical Society)

Fig. 9

(Adapted from Tran et al. [83])

Fig. 10

(Adapted from: TiOX [39], VOX [39], CrOX, [113, MnOX [141], NbOX [99, 105], MoOX [125, 130])

Similar content being viewed by others

References

  1. Xu Y, Schoonen MAA (2000) Am Miner 85:543–556

    Article  CAS  Google Scholar 

  2. Sato S (1986) Chem Phys Lett 123:126–128

    Article  CAS  Google Scholar 

  3. Anpo M (1997) Catal Surv Asia 1:169–179

    Article  CAS  Google Scholar 

  4. Wang J, Uma S, Klabunde KJ (2004) Appl Catal B 48:151–154

    Article  CAS  Google Scholar 

  5. Dong F, Sun Y, Fu M (2012) Int J Photoenergy 2012:1–10

    Article  CAS  Google Scholar 

  6. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  7. Bahnemann DW, Kormann C, Hoffmann MR (1987) J Phys Chem 91:3789–3798

    Article  CAS  Google Scholar 

  8. Anpo M, Shima T, Kodama S, Kubokawa Y (1987) J Phys Chem 91:4305–4310

    Article  CAS  Google Scholar 

  9. Wu P, Tatsumi T, Komatsu T, Yashima T (2002) Chem Mater 14:1657–1664

    Article  CAS  Google Scholar 

  10. Yang J, Zhang J, Zhu L, Chen S, Zhang Y, Tang Y, Zhu Y, Li Y (2006) J Hazard Mater 137:952–958

    Article  CAS  PubMed  Google Scholar 

  11. Marugán J, Van Grieken R, Alfano OM, Cassano AE (2006) AIChE J 52:2832–2843

    Article  CAS  Google Scholar 

  12. Lou Y, Tang Q, Wang H, Chia B, Wang Y, Yang Y (2008) Appl Catal A 350:118–125

    Article  CAS  Google Scholar 

  13. Gao X, Bare SR, Weckhuysen BM, Wachs IE (1998) J Phys Chem B 102:10842–10852

    Article  CAS  Google Scholar 

  14. Gao X, Bare SR, Fierro JLG, Banares MA, Wachs IE (1998) J Phys Chem B 102:5653–5666

    Article  CAS  Google Scholar 

  15. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Catal Today 44:327–332

    Article  CAS  Google Scholar 

  16. Jarupatrakorn J, Tilley TD (2002) J Am Chem Soc 124:8380–8388

    Article  CAS  PubMed  Google Scholar 

  17. Levitz P, Ehret G, Sinha SK, Drake JM (1991) J Chem Phys 95:6151–6161

    Article  CAS  Google Scholar 

  18. Wiltzius P, Bates FS, Dierker SB, Wignall GD (1987) Phys Rev A 36:2991–2994

    Article  CAS  Google Scholar 

  19. Du G, Lim S, Pinault M, Wang C, Fang F, Pfefferle L, Haller GL (2008) J Catal 253:74–90

    Article  CAS  Google Scholar 

  20. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  21. Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147–1160

    Article  CAS  Google Scholar 

  22. Beck JS, Vartuli J, Roth WJ, Leonowicz M, Kresge C, Schmitt K, Chu C, Olson DH, Sheppard E, McCullen S (1992) J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  23. Kawi S, Te M (1998) Catal Today 44:101–109

    Article  CAS  Google Scholar 

  24. Amiridis MD, Duevel RV, Wachs IE (1999) Appl Catal B 20:111–122

    Article  CAS  Google Scholar 

  25. Deo G, Wachs IE (1994) J Catal 146:335–345

    Article  CAS  Google Scholar 

  26. Strunk J, Bañares MA, Wachs IE (2017) Top Catal 60:1577–1617

    Article  CAS  Google Scholar 

  27. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S (2014) Sci World J 2014:21

    Article  CAS  Google Scholar 

  28. Lanziano C, Rodriguez F, Rabelo S, Guirardello R, Da Silva V, Rodell C (2014) Chem Eng Trans 37:589–594

    Google Scholar 

  29. Aghighi A, Haghighat F (2015) J Environ Chem Eng 3:1622–1629

    Article  CAS  Google Scholar 

  30. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Zhao H, Andino JM, Li Y (2012) ACS Catal 2:1817–1828

    Article  CAS  Google Scholar 

  32. Augugliaro V, Coluccia S, Loddo V, Marchese L, Martra G, Palmisano L, Schiavello M (1999) Appl Catal B 20:15–27

    Article  CAS  Google Scholar 

  33. Landmann M, Rauls E, Schmidt WG (2012) J Phys: Condens Matter 24:195503

    CAS  Google Scholar 

  34. Anpo M, Takeuchi M (2003) J Catal 216:505–516

    Article  CAS  Google Scholar 

  35. Kang I-C, Zhang Q, Yin S, Sato T, Saito F (2008) Appl Catal B 80:81–87

    Article  CAS  Google Scholar 

  36. Mei B, Pougin A, Strunk J (2013) J Catal 306:184–189

    Article  CAS  Google Scholar 

  37. Ohno T, Tsubota T, Toyofuku M, Inaba R (2004) Catal Lett 98:255–258

    Article  CAS  Google Scholar 

  38. Luan Z, Maes EM, van der Heide PAW, Zhao D, Czernuszewicz RS, Kevan L (1999) Chem Mater 11:3680–3686

    Article  CAS  Google Scholar 

  39. Nitsche D, Hess C (2016) J Phys Chem C 120:1025–1037

    Article  CAS  Google Scholar 

  40. Lassaletta G, Fernandez A, Espinos J, Gonzalez-Elipe A (1995) J Phys Chem 99:1484–1490

    Article  CAS  Google Scholar 

  41. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) J Phys Chem 89:5017–5021

    Article  CAS  Google Scholar 

  42. Anpo M (1989) Res Chem Intermed 11:67

    Article  CAS  Google Scholar 

  43. Yamashita H, Ichihashi Y, Harada M, Stewart G, Fox MA, Anpo M (1996) J Catal 158:97–101

    Article  CAS  Google Scholar 

  44. Colbeau-Justin C, Kunst M, Huguenin D (2003) J Mater Sci 38:2429–2437

    Article  CAS  Google Scholar 

  45. Halmann M (1978) Nature 275:115

    Article  CAS  Google Scholar 

  46. Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277:637–638

    Article  CAS  Google Scholar 

  47. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) J Electroanal Chem 396:21–26

    Article  Google Scholar 

  48. Fu X, Clark LA, Yang Q, Anderson MA (1996) Environ Sci Technol 30:647–653

    Article  CAS  Google Scholar 

  49. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205–216

    Article  CAS  Google Scholar 

  50. Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 44:8269

    Article  CAS  Google Scholar 

  51. Anpo M, Chiba K (1992) J Mol Catal 74:207–212

    Article  CAS  Google Scholar 

  52. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) J Phys Chem B 101:2632–2636

    Article  CAS  Google Scholar 

  53. Mori K, Yamashita H, Anpo M (2012) RSC Adv 2:3165–3172

    Article  CAS  Google Scholar 

  54. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed 52:7372–7408

    Article  CAS  Google Scholar 

  55. Amano F, Yamaguchi T, Tanaka T (2006) J Phys Chem B 110:281–288

    Article  CAS  PubMed  Google Scholar 

  56. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Chem Rev 114:9987–10043

    Article  CAS  PubMed  Google Scholar 

  57. Riedel E (2011) Anorganische chemie. Walter de Gruyter

  58. Tanabe K (1985) Mater Chem Phys 13:347–364

    Article  CAS  Google Scholar 

  59. Tanabe K, Yamaguchi T (1994) Catal Today 20:185–197

    Article  CAS  Google Scholar 

  60. Krishnan CK, Hayashi T, Ogura M (2008) Adv Mater 20:2131–2136

    Article  CAS  Google Scholar 

  61. Yoshida H, Chaskar MG, Kato Y, Hattori T (2003) J Photochem Photobiol A 160:47–53

    Article  CAS  Google Scholar 

  62. Wong MS, Huang HC, Ying JY (2002) Chem Mater 14:1961–1973

    Article  CAS  Google Scholar 

  63. Chen S-Y, Lee J-F, Cheng S (2010) J Catal 270:196–205

    Article  CAS  Google Scholar 

  64. Iglesias J, Melero JA, Bautista LF, Morales G, Sánchez-Vázquez R, Andreola MT, Lizarraga-Fernández A (2011) Catal Today 167:46–55

    Article  CAS  Google Scholar 

  65. Nakano Y, Iizuka T, Hattori H, Tanabe K (1979) J Catal 57:1–10

    Article  CAS  Google Scholar 

  66. Yücel O, Cinar F, Addemir O, Tekin A (1996) High Temp Mater Processes (London) 15:103

    Google Scholar 

  67. Scott W, Layfield E (1931) Ind Eng Chem 23:617–620

    Article  CAS  Google Scholar 

  68. Yoshiya K (1979) Bull Chem Soc Jpn 52:888–894

    Article  Google Scholar 

  69. Chen L, Yang B, Zhang X, Dong W, Cao K, Zhang X (2006) Energy Fuels 20:915–918

    Article  CAS  Google Scholar 

  70. Kortewille B, Wachs IE, Cibura N, Pfingsten O, Bacher G, Muhler M, Strunk J (2018) Eur J Inorg Chem 2018:3725–3735

    Article  CAS  Google Scholar 

  71. Tian H, Ross EI, Wachs IE (2006) J Phys Chem B 110:9593–9600

    Article  CAS  PubMed  Google Scholar 

  72. Blasco T, Nieto JML (1997) Appl Catal A 157:117–142

    Article  CAS  Google Scholar 

  73. Deo G, Wachs IE (1991) J Phys Chem 95:5889–5895

    Article  CAS  Google Scholar 

  74. Scharf U, Schraml-Marth M, Wokaun A, Baiker A (1991) J Chem Soc. Faraday Transactions 87:3299–3307

    Article  CAS  Google Scholar 

  75. Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67–90

    Article  CAS  Google Scholar 

  76. Schraml-Marth M, Wokaun A, Pohl M, Krauss H-L (1991) J Chem Soc. Faraday Transactions 87:2635–2646

    Article  CAS  Google Scholar 

  77. Deo G, Wachs IE (1991) Structure-activity and selectivity relationships in heterogeneous catalysis. In: R. K. Grasselli, A. W. Sleight (eds) Structure-activity and selectivity relationships in heterogeneous catalysis Proceedings of the ACS symposium on structure-activity relationships in heterogeneous catalysis. Elsevier, Amsterdam, pp. 13–20

  78. Das N, Eckert H, Hu H, Wachs IE, Walzer JF, Feher FJ (1993) J Phys Chem 97:8240–8243

    Article  CAS  Google Scholar 

  79. Wachs IE (2003) Dalton Trans (Cambridge, England) 42:11762–11769

    Article  CAS  Google Scholar 

  80. Baltes M, Cassiers K, Van Der Voort P, Weckhuysen BM, Schoonheydt RA, Vansant EF (2001) J Catal 197:160–171

    Article  CAS  Google Scholar 

  81. Gao X, Wachs IE (2000) J Phys Chem B 104:1261–1268

    Article  CAS  Google Scholar 

  82. Tran K, Hanning-Lee MA, Biswas A, Stiegman A, Scott GW (1995) J Am Chem Soc 117:2618–2626

    Article  CAS  Google Scholar 

  83. Tran K, Stiegman A, Scott GW (1996) Inorg Chim Acta 243:185–191

    Article  CAS  Google Scholar 

  84. Anpo M, Kubokawa Y (1987) Rev Chem Intermed 8:105–124

    Article  CAS  Google Scholar 

  85. Anpo M, Tanahashi I, Kubokawa Y (1980) J Phys Chem 84:3440–3443

    Article  CAS  Google Scholar 

  86. Yoshida S, Magatani Y, Noda S, Funabiki T (1981) Journal of the Chemical Society. Chemical Communications 1981:601–602

    Article  Google Scholar 

  87. Patterson HH, Cheng J, Despres S, Sunamoto M, Anpo M (1991) J Phys Chem 95:8813–8818

    Article  CAS  Google Scholar 

  88. Amano F, Tanaka T, Funabiki T (2004) Langmuir 20:4236–4240

    Article  CAS  PubMed  Google Scholar 

  89. Deo G, Wachs IE (1994) J Catal 146:323–334

    Article  CAS  Google Scholar 

  90. Kortewille B, Wachs IE, Cibura N, Pfingsten O, Bacher G, Muhler M, Strunk J (2018) ChemCatChem 10:2360–2364

    Article  CAS  Google Scholar 

  91. El-Roz M, Lakiss L, Telegeiev I, Lebedev OI, Bazin P, Vicente A, Fernandez C, Valtchev V (2017) ACS Appl Mater Interfaces 9:17846–17855

    Article  CAS  PubMed  Google Scholar 

  92. Ushikubo T (2000) Catal Today 57:331–338

    Article  CAS  Google Scholar 

  93. Tanabe K (1990) Catal Today 8:1–11

    Article  CAS  Google Scholar 

  94. Jehng JM, Wachs IE (1991) J Phys Chem 95:7373–7379

    Article  CAS  Google Scholar 

  95. Jehng J-M, Wachs IE (1991) J Mol Catal 67:369–387

    Article  CAS  Google Scholar 

  96. Jehng J-M, Wachs IE, Clark FT, Springman MC (1993) J Mol Catal 81:63–75

    Article  CAS  Google Scholar 

  97. Gao X, Wachs IE, Wong MS, Ying JY (2001) J Catal 203:18–24

    Article  CAS  Google Scholar 

  98. Tanaka T, Nojima H, Yoshida H, Nakagawa H, Funabiki T, Yoshida S (1993) Catal Today 16:297–307

    Article  CAS  Google Scholar 

  99. Yoshida H, Tanaka T, Yoshida T, Funabiki T, Yoshida S (1996) Catal Today 28:79–89

    Article  CAS  Google Scholar 

  100. Tanabe K, Iizuka T (1983) Catalytic Properties of Niobium Compounds. Niobium Technical Report 03/83. Compania Brasileira de Metalurgia e Mineracao, Araxa

  101. Wachs IE, Jehng JM, Deo G, Hu H, Arora N (1996) Catal Today 28:199–205

    Article  CAS  Google Scholar 

  102. Wachs IE, Chen Y, Jehng J-M, Briand LE, Tanaka T (2003) Catal Today 78:13–24

    Article  CAS  Google Scholar 

  103. Datka J, Turek AM, Jehng JM, Wachs IE (1992) J Catal 135:186–199

    Article  CAS  Google Scholar 

  104. Tokio I, Kazuharu O, Kozo T (1983) Bull Chem Soc Jpn 56:2927–2931

    Article  Google Scholar 

  105. Yoshida S, Nishimura Y, Tanaka T, Kanai H, Funabiki T (1990) Catal Today 8:67–75

    Article  CAS  Google Scholar 

  106. Hogan J (1970) J Polym Sci A 8:2637–2652

    Article  CAS  Google Scholar 

  107. Greiner MT, Lu Z-H (2013) Npg Asia Mater 5:e55

    Article  CAS  Google Scholar 

  108. Yuzheng G, Stewart JC, John R (2012) J Phys: Condens Matter 24:325504

    Google Scholar 

  109. Chun-Shen C, H G, H S (1996) Physica Status Solidi (a) 155:417–425

    Article  Google Scholar 

  110. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327–3350

    Article  CAS  PubMed  Google Scholar 

  111. Lee EL, Wachs IE (2007) J Phys Chem C 111:14410–14425

    Article  CAS  Google Scholar 

  112. Hardcastle FD, Wachs IE (1988) J Mol Catal 46:173–186

    Article  Google Scholar 

  113. Kim DS, Tatibouet J-M, Wachs IE (1992) J Catal 136:209–221

    Article  CAS  Google Scholar 

  114. Chakrabarti A, Gierada M, Handzlik J, Wachs IE (2016) Top Catal 59:725–739

    Article  CAS  Google Scholar 

  115. Murata C, Yoshida H, Hattori T (2001) Chem Commun 2001:2412–2413

    Article  CAS  Google Scholar 

  116. Hazenkamp M, Blasse G (1992) J Phys Chem 96:3442–3446

    Article  CAS  Google Scholar 

  117. Anpo M, Tanahashi I, Kubokawa Y (1982) J Phys Chem 86:1–3

    Article  CAS  Google Scholar 

  118. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:223–232

    Article  CAS  Google Scholar 

  119. McDaniel MP (1982) J Catal 76:17–28

    Article  CAS  Google Scholar 

  120. Matsuoka M, Anpo M (2003) J Photochem Photobiol C 3:225–252

    Article  CAS  Google Scholar 

  121. Balandin AA, Rozhdestvenskaya ID (1959) Bull Acad Sci USSR Div Chem Sci 8:1804–1810

    Article  Google Scholar 

  122. Katrib A, Leflaive P, Hilaire L, Maire G (1996) Catal Lett 38:95–99

    Article  CAS  Google Scholar 

  123. Cuba-Torres CM, Marin-Flores O, Owen CD, Wang Z, Garcia-Perez M, Norton MG, Ha S (2015) Fuel 146:132–137

    Article  CAS  Google Scholar 

  124. Setnička M, Tišler Z, Kubička D, Bulánek R (2015) Top Catal 58:866–876

    Article  CAS  Google Scholar 

  125. Ono T, Anpo M, Kubokawa Y (1986) J Phys Chem 90:4780–4784

    Article  CAS  Google Scholar 

  126. Lou Y, Wang H, Zhang Q, Wang Y (2007) J Catal 247:245–255

    Article  CAS  Google Scholar 

  127. Thielemann JP, Ressler T, Walter A, Tzolova-Müller G, Hess C (2011) Appl Catal A 399:28–34

    Article  CAS  Google Scholar 

  128. Louis C, Che M, Anpo M (1993) J Catal 141:453–464

    Article  CAS  Google Scholar 

  129. Anpo M, Suzuki T, Kubokawa Y, Tanaka F, Yamashita S (1984) J Phys Chem 88:5778–5779

    Article  CAS  Google Scholar 

  130. Anpo M, Kondo M, Louis C, Che M, Coluccia S (1989) J Am Chem Soc 111:8791–8799

    Article  CAS  Google Scholar 

  131. Thielemann JP, Kröhnert J, Hess C (2010) J Phys Chem C 114:17092–17098

    Article  CAS  Google Scholar 

  132. Golandaj AJ, Mahomed AS, Singh S, Friedrich HB (2015) J Porous Mater 22:787–796

    Article  CAS  Google Scholar 

  133. Shetty M, Murugappan K, Prasomsri T, Green WH, Román-Leshkov Y (2015) J Catal 331:86–97

    Article  CAS  Google Scholar 

  134. Anpo M, Tanahashi I, Kubokawa Y (1982) J Chem Soc. Faraday Transactions 178:2121–2128

    Article  Google Scholar 

  135. Anpo M, Kubokawa Y (1982) J Catal 75:204–206

    Article  CAS  Google Scholar 

  136. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040

    Article  CAS  PubMed  Google Scholar 

  137. Haumann M, Müller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W, Dau H (2005) Biochemistry 44:1894–1908

    Article  CAS  PubMed  Google Scholar 

  138. Nugent JHA, Rich AM, Evans MCW (2001) Biochim Biophys Acta (BBA) 1503:138–146

    Article  CAS  Google Scholar 

  139. Kok B, Forbush B, McGloin M (1970) Photochem Photobiol 11:457–475

    Article  CAS  PubMed  Google Scholar 

  140. Zhong W, Kirk SR, Yin D, Li Y, Zou R, Mao L, Zou G (2015) Chem Eng J 280:737–747

    Article  CAS  Google Scholar 

  141. Reed C, Lee Y-K, Oyama ST (2006) J Phys Chem B 110:4207–4216

    Article  CAS  PubMed  Google Scholar 

  142. Parida KM, Dash SS (2009) J Mol Catal A 306:54–61

    Article  CAS  Google Scholar 

  143. Tang Q, Hu S, Chen Y, Guo Z, Hu Y, Chen Y, Yang Y (2010) Microporous Mesoporous Mater 132:501–509

    Article  CAS  Google Scholar 

  144. Andreozzi R, Insola A, Caprio V, Marotta R, Tufano V (1996) Appl Catal A 138:75–81

    Article  CAS  Google Scholar 

  145. Han Y-F, Chen F, Zhong Z-Y, Ramesh K, Widjaja E, Chen L-W (2006) Catal Commun 7:739–744

    Article  CAS  Google Scholar 

  146. Ahmed KAM, Peng H, Wu K, Huang K (2011) Chem Eng J 172:531–539

    Article  CAS  Google Scholar 

  147. Duan L, Sun B, Wei M, Luo S, Pan F, Xu A, Li X (2015) J Hazard Mater 285:356–365

    Article  CAS  PubMed  Google Scholar 

  148. Cao H, Suib SL (1994) J Am Chem Soc 116:5334–5342

    Article  CAS  Google Scholar 

  149. Chen J, Lin JC, Purohit V, Cutlip MB, Suib SL (1997) Catal Today 33:205–214

    Article  CAS  Google Scholar 

  150. Iyer A, Galindo H, Sithambaram S (2010) King’ondu C, Chen C-H, Suib SL. Appl Catal A 375:295–302

    Article  CAS  Google Scholar 

  151. Othman I, Mohamed RM, Ibrahem FM (2007) J Photochem Photobiol, A 189:80–85

    Article  CAS  Google Scholar 

  152. Mohamed MM, Othman I, Mohamed RM (2007) J Photochem Photobiol A 191:153–161

    Article  CAS  Google Scholar 

  153. Villaseñor J, Reyes P, Pecchi G (2002) Catal Today 76:121–131

    Article  Google Scholar 

  154. Kim W, Edri E, Frei H (2016) Acc Chem Res 49:1634–1645

    Article  CAS  PubMed  Google Scholar 

  155. Baldoví HG, Neaţu Ş, Khan A, Asiri AM, Kosa SA, Garcia H (2015) J Phys Chem C 119:6819–6827

    Article  CAS  Google Scholar 

  156. Lüken A, Muhler M, Strunk J (2015) Phys Chem Chem Phys 17:10391–10397

    Article  CAS  PubMed  Google Scholar 

  157. Balcerski W, Ryu SY, Hoffmann MR (2007) J Phys Chem C 111:15357–15362

    Article  CAS  Google Scholar 

  158. Batzill M (2011) Energy Environ Sci 4:3275–3286

    Article  CAS  Google Scholar 

  159. Shen TFR, Lai M-H, Yang TCK, Fu IP, Liang N-Y, Chen W-T (2012) J Taiwan Inst Chem Eng 43:95–101

    Article  CAS  Google Scholar 

  160. Gong H, Cao Y, Zhang Y, Zhang Y, Liu K, Cao H, Yan H (2017) RSC Adv 7:19019–19025

    Article  CAS  Google Scholar 

  161. Haque F, Daeneke T, Kalantar-zadeh K, Ou JZ (2017) Nano-Micro Lett 10:23

    Article  CAS  Google Scholar 

  162. Ross-Medgaarden EI, Wachs IE, Knowles WV, Burrows A, Kiely CJ, Wong MS (2009) J Am Chem Soc 131:680–687

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Strunk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, M., Klahn, M. & Strunk, J. Photophysical and Catalytic Properties of Silica Supported Early Transition Metal Oxides Relevant for Photocatalytic Applications. Catal Lett 149, 2291–2306 (2019). https://doi.org/10.1007/s10562-019-02803-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02803-w

Keywords

Navigation