Skip to main content

Basic Principles, Mechanism, and Challenges of Photocatalysis

  • Chapter
  • First Online:
Nanocomposites for Visible Light-induced Photocatalysis

Abstract

Photocatalyst is a gifted method which can be used for various purposes like degradation of various organic pollutants in wastewater, production of hydrogen, purification of air, and antibacterial activity. When compared with other methods, photocatalysis is rapidly growing and gaining more attention from the researchers due to its several advantages such as low cost and attractive efficiency. Photocatalysis is a unique process for rectifying energy and environmental issues. In this connection, this chapter deals with basic principles, classification, mechanism, limitations, and operating parameters of photocatalytic processes. Furthermore, the most efficient photocatalytic materials, its mechanism, its challenges, and their solution of rectification were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A 137(1):63–69

    Article  CAS  Google Scholar 

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2–3):520–529

    Article  CAS  Google Scholar 

  • Ansari MO, Khan MM, Ansari SA, Cho MH (2015) Electrically conductive polyaniline sensitized defective-TiO2 for improved visible light photocatalytic and photoelectrochemical performance: a synergistic effect. New J Chem 39(11):8381–8388

    Article  CAS  Google Scholar 

  • Castillo-Ledezma JH, Sánchez Salas JL, López-Malo A, Bandala ER (2011) Effect of pH, solar irradiation, and semiconductor concentration on the photocatalytic disinfection of Escherichia coli in water using nitrogen-doped TiO2. Eur Food Res Technol 233(5):825–834

    Article  CAS  Google Scholar 

  • Cernuto G, Masciocchi N, Cervellino A, Colonna GM, Guagliardi A (2011) Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total scattering Debye function study. J Am Chem Soc 133(9):3114–3119

    Article  CAS  Google Scholar 

  • Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C 6(2–3):186–205

    Article  CAS  Google Scholar 

  • Choi YI, Lee S, Kim SK, Kim Y, Cho DW, Khan MM, Sohn Y (2016) Fabrication of ZnO, ZnS, Ag-ZnS, and Au-ZnS microspheres for photocatalytic activities, CO oxidation and 2-hydroxyterephthalic acid synthesis. J Alloy Compd 675:46–56

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  Google Scholar 

  • Coleman HM, Eggins BR, Byrne J, Palmer FL, King E (2000) Photocatalytic degradation of 17-β-oestradiol on immobilised TiO2. Appl Catal B 24(1):L1–L5

    Article  CAS  Google Scholar 

  • Cun W, Jincai Z, Xinming W, Bixian M, Guoying S, Ping’an P, Jiamo F (2002) Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl Catal B 39(3):269–279

    Article  Google Scholar 

  • Ekambaram S, Iikubo Y, Kudo A (2007) Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J Alloy Compd 433(1–2):237–240

    Article  CAS  Google Scholar 

  • Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149(3):631–642

    Article  CAS  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Article  CAS  Google Scholar 

  • Freeman H, Harten T, Springer J, Randall P, Curran MA, Stone K (1992) Industrial pollution prevention!: a critical review. J Air Waste Manage Assoc 42(5):618–656

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21

    Article  CAS  Google Scholar 

  • Gnanasekaran L, Hemamalini R, Ravichandran K (2015) Synthesis and characterization of TiO2 quantum dots for photocatalytic application. J Saudi Chem Soc 19(5):589–594

    Article  Google Scholar 

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8(3–4):553–597

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2(16):6380

    Article  CAS  Google Scholar 

  • Hagen J (2006) Industrial catalysis: a practical approach/Jens Hagen, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Han G, Wang L, Pei C, Shi R, Liu B, Zhao H, Yang H, Liu S (2014) Size-dependent optical properties and enhanced visible light photocatalytic activity of wurtzite CdSe hexagonal nanoflakes with dominant 001 facets. J Alloy Compd 610:62–68

    Article  CAS  Google Scholar 

  • In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129(45):13790–13791

    Article  CAS  Google Scholar 

  • Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod 42:228–240

    Article  CAS  Google Scholar 

  • Johnson MB, Mehrvar M (2008) Aqueous metronidazole degradation by UV/H2O2 process in single-and multi-lamp tubular photoreactors: kinetics and reactor design. Ind Eng Chem Res 47(17):6525–6537

    Article  CAS  Google Scholar 

  • Kanade KG, Kale BB, Baeg JO, Lee SM, Lee CW, Moon SJ, Chang H (2007) Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater Chem Phys 102:98–104

    Article  CAS  Google Scholar 

  • Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci Mater Electron 27(5):4206–4215

    Article  CAS  Google Scholar 

  • Khan ME, Khan MM, Cho MH (2015a) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39(10):8121–8129

    Article  CAS  Google Scholar 

  • Khan MM, Adil SF, Al-Mayouf A (2015b) Metal oxides as photocatalysts. J Saudi Chem Soc 19(5):462–464

    Article  Google Scholar 

  • Khan MM, Ansari SA, Amal MI, Lee J, Cho MH (2013) Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale 5(10):4427–4435

    Article  CAS  Google Scholar 

  • Khan MM, Ansari SA, Ansari MO, Min BK, Lee J, Cho MH (2014a) Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. J Phys Chem C 118(18):9477–9484

    Article  CAS  Google Scholar 

  • Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014b) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2(3):637–644

    Article  CAS  Google Scholar 

  • Khan MM, Ansari SA, Pradhan D, Han DH, Lee J, Cho MH (2014c) Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res 53(23):9754–9763

    Article  CAS  Google Scholar 

  • Khan MM, Lee J, Cho MH (2014d) Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind Eng Chem 20(4):1584–1590

    Article  CAS  Google Scholar 

  • Khoa NT, Kim SW, Yoo D, Cho S, Kim EJ, Hahn SH (2015) Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photoinduced charge transfer for photocatalysis. ACS Appl Mater Interfaces 7(6):3524–3531

    Article  CAS  Google Scholar 

  • Kiriakidou F, Kondarides DI, Verykios XE (1999) The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catal Today 54:119–130

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B 49(1):1–14

    Article  CAS  Google Scholar 

  • Ling Q, Sun J, Zhou Q (2008) Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen. Appl Surf Sci 254(10):3236–3241

    Article  CAS  Google Scholar 

  • Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, Rudan I, Campbell H, Cibulskis R, Li M, Mathers C, Black RE (2012) Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. The Lancet 379(9832):2151–2161

    Article  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    Article  CAS  Google Scholar 

  • Milenova K, Avramova I, Eliyas A, Blaskov V, Stambolova I, Kassabova N (2014) Application of activated M/ZnO (M = Mn Co, Ni, Cu, Ag) in photocatalytic degradation of diazo textile coloring dye. Environ Sci Pollut Res Int 21(21):12249–12256

    Article  CAS  Google Scholar 

  • Moon J, Yun CY, Chung K, Kang M, Yi J (2003) Photocatalytic activation of TiO2 under visible light using Acid Red 44. Catal Today 87(1–4):77–86

    Article  CAS  Google Scholar 

  • Moo-Young HK (2007) Pulp and paper effluent management. Water Environ Res 79(10):1733–1741

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189

    Article  CAS  Google Scholar 

  • Neppolian B, Choi HS, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  Google Scholar 

  • Pagga U, Brown D (1986) The degradation of dyestuffs: part II behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15(4):479–491

    Article  CAS  Google Scholar 

  • Parida KM, Parija S (2006) Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol Energy 80(8):1048–1054

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne J, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Qiu R, Zhang D, Mo Y, Song L, Brewer E, Huang X, Xiong Y (2008) Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater 156(1–3):80–85

    Article  CAS  Google Scholar 

  • Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni M, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C 9(4):171–192

    Article  CAS  Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170(2–3):560–569

    Article  CAS  Google Scholar 

  • Reza KM, Kurny AS, Gulshan F (2015) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci. doi:10.1007/s13201-015-0367-y

    Google Scholar 

  • Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed Engl 42(40):4908–4911

    Article  CAS  Google Scholar 

  • Saravanan R, Gracia F, Khan MM, Poornima V, Gupta VK, Narayanan V, Stephen A (2015) ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J Mol Liq 209:374–380

    Article  CAS  Google Scholar 

  • Saravanan R, Gupta VK, Narayanan V, Stephen A (2013a) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liq 181:133–141

    Article  CAS  Google Scholar 

  • Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013b) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C Mater Biol Appl 33(1):91–98

    Article  CAS  Google Scholar 

  • Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033

    Article  CAS  Google Scholar 

  • Saravanan R, SHANKAR H, Prakash T, Narayanan V, Stephen A (2011a) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125(1–2):277–280

    Article  CAS  Google Scholar 

  • Saravanan R, Shankar H, Rajasudha G, Stephen A, Narayanan V (2011b) Photocatalytic degradation of organic dye using nano ZnO. Int J Nanosci 10(01–02):253–257

    Article  CAS  Google Scholar 

  • Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013c) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liq 177:394–401

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35(1):109–136

    Article  Google Scholar 

  • Serpone N, Horikoshi S, Emeline AV (2010) Microwaves in advanced oxidation processes for environmental applications. A brief review. J Photochem Photobiol C 11(2–3):114–131

    Article  CAS  Google Scholar 

  • Shifu C, Wei Z, Sujuan Z, Wei L (2009) Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem Eng J 148(2–3):263–269

    Article  CAS  Google Scholar 

  • Song L, Qiu R, Mo Y, Zhang D, Wei H, Xiong Y (2007) Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal Commun 8(3):429–433

    Article  CAS  Google Scholar 

  • Wang H, Xie C, Zhang W, Cai S, Yang Z, Gui Y (2007) Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater 141(3):645–652

    Article  CAS  Google Scholar 

  • Wang Y, Li X, Lu G, Chen G, Chen Y (2008) Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology. Mater Lett 62(15):2359–2362

    Article  CAS  Google Scholar 

  • Wei F, Ni L, Cui P (2008) Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. J Hazard Mater 156(1–3):135–140

    Google Scholar 

  • Xiao Q, Zhang J, Xiao C, Tan X (2007) Photocatalytic decolorization of methylene blue over Zn1−xCoxO under visible light irradiation. Mater Sci Eng B 142(2–3):121–125

    Article  CAS  Google Scholar 

  • Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A 148(1–3):257–261

    Article  CAS  Google Scholar 

  • Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142

    Article  CAS  Google Scholar 

  • Zhang L, Yang H, Xie X, Zhang F, Li L (2009) Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening. J Alloy Compd 473(1–2):65–70

    CAS  Google Scholar 

  • Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 5(5):6732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saravanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saravanan, R., Gracia, F., Stephen, A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. In: Khan, M., Pradhan, D., Sohn, Y. (eds) Nanocomposites for Visible Light-induced Photocatalysis. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-62446-4_2

Download citation

Publish with us

Policies and ethics