Skip to main content
Log in

Operando Molecular Spectroscopy During Ethylene Polymerization by Supported CrO x /SiO2 Catalysts: Active Sites, Reaction Intermediates, and Structure-Activity Relationship

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Time-resolved operando molecular spectroscopy was applied during ethylene polymerization by supported CrO x /SiO2 catalysts to investigate the structure-activity relationships for this important industrial catalytic reaction. A combination of spectroscopic techniques (Raman, UV–Vis, XAS, DRIFTS and TPSR) during ethylene polymerization allows for the first time to monitor the molecular events taking place during activation of supported CrO x /SiO2 catalysts by ethylene and establishment of the structure-activity relationships for this reaction. Based on complementary DFT computational studies, a new initiation mechanism for ethylene polymerization is proposed. During reaction, the initial surface Cr+6O x sites reduce to Cr+3 sites to form Cr–(CH2)2CH=CH2 and Cr–CH=CH2 reaction intermediates with the latter representing the catalytic active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hogan JP (1983) In: Leach BE (ed) Applied industrial catalysis, 1st edn. Academic Press Inc, New York

    Google Scholar 

  2. McDaniel M (2010) In: Gates BC, Jentoft FC, Knozinger H (eds) Advances in Catalysis, 1st edn. Elsevier Inc, Amsterdam

    Google Scholar 

  3. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina Z (2005) Chem Rev 105:115–183

    Article  CAS  Google Scholar 

  4. Hogan JP, Banks RL (1958) US Patent 2825721

  5. Hogan JP (1970) J Polym Sci Part A 8:2637–2652

    Article  CAS  Google Scholar 

  6. Zecchina A, Garrone E, Ghiotti G, Morterra C, Borello E (1975) J Phys Chem 79:966–972

    Article  CAS  Google Scholar 

  7. Fubini B, Ghiotti G, Stradella L, Garrone E, Morterra C (1980) J Catal 66:200–213

    Article  CAS  Google Scholar 

  8. Weckhuysen BM, De Ridder LM, Schoonheydt RA (1993) J Phys Chem 97:4756–4763

    Article  CAS  Google Scholar 

  9. Weckhuysen BM, Schoonheydt RA, Jehng JM, Wachs IE, Cho SJ, Ryoo R, Kljlstra S, Poels E (1995) J Chem Soc Far Trans 91:3245–3253

    Article  CAS  Google Scholar 

  10. Groppo E, Damin A, Bonino F, Zecchina A, Bordiga S, Lamberti C (2005) Chem Mater 17:2019–2027

    Article  CAS  Google Scholar 

  11. Chakrabarti A, Wachs IE (2015) Catal Lett 145:985–994

    Article  CAS  Google Scholar 

  12. Groppo E, Prestipino C, Cesano F, Bonino F, Bordiga S, Lamberti C, Thune PC, Niemantsverdriet JW, Zecchina A (2005) J Catal 230:98–108

    Article  CAS  Google Scholar 

  13. Lee EL, Wachs IE (2007) J Phys Chem C 111:14410–14425

    Article  CAS  Google Scholar 

  14. Bordiga S, Bertarione S, Damin A, Prestipino C, Spoto G, Lamberti C, Zecchina A (2003) J Mol Catal A 204–205:527–534

    Article  Google Scholar 

  15. Groppo E, Lamberti C, Bordiga S, Spoto G, Damin A, Zecchina A (2005) J Phys Chem B 109:15024–15031

    Article  CAS  Google Scholar 

  16. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2006) J Catal 240:172–181

    Article  CAS  Google Scholar 

  17. Groppo E, Estephane J, Lamberti C, Spoto G, Zecchina A (2007) Catal Today 126:228–234

    Article  CAS  Google Scholar 

  18. Barzan C, Groppo E, Quadrelli EA, Monteil V, Bordiga S (2012) Phys Chem Chem Phys 14:2239–2245

    Article  CAS  Google Scholar 

  19. McGuinness DS, Davies NW, Horne J, Ivanov I (2010) Organometallics 29:6111–6116

    Article  CAS  Google Scholar 

  20. Conley MP, Delley MF, Siddiqi G, Lapadula G, Norsic S, Monteil V, Safonova OV, Coperet C (2014) Angew Chem Int Ed 53:1872–1876

    Article  Google Scholar 

  21. Delley MF, Conley MP, Coperet C (2014) Catal Lett 144:805–808

    Article  CAS  Google Scholar 

  22. Delley MF, Nunez-Zarur F, Conley MP, Comas-Vives A, Siddiqi G, Norsic S, Monteil V, Safonova OV, Coperet C (2014) PNAS 111:11624–11629

    Article  CAS  Google Scholar 

  23. Brown C, Krzystek J, Achey R, Lita A, Fu R, Meulenberg RW, Polinski M, Peek N, Wang Y, van de Burgt LJ, Profeta JS, Stiegman AE, Scott SL (2015) ACS Catal 5:5574–5583

    Article  CAS  Google Scholar 

  24. Conley MP, Delley MF, Siddiqi G, Lapadula G, Norsic S, Monteil V, Safonova OV, Coperet C (2015) Angew Chem Int Ed 53:6657–6671

    Google Scholar 

  25. Delley MF, Nunez-Zarur F, Conley MP, Comas-Vives A, Siddiqi G, Coperet C (2015) PNAS 112:E4505

    Article  Google Scholar 

  26. Davydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, England

    Book  Google Scholar 

  27. Zielinski P, Dalla Lana IG (1992) J Catal 137:368–376

    Article  CAS  Google Scholar 

  28. Kantcheva M, Dalla Lana IG, Szymura JA (1995) J Catal 154:329–334

    Article  CAS  Google Scholar 

  29. Ghiotti G, Garrone E, Zecchina A (1988) J Mol Catal 46:61–77

    Article  Google Scholar 

  30. Ghiotti G, Garrone E, Coluccia S, Morterra C, Zecchina A (1979) J Chem Soc Chem Comm 22:1032–1033

    Article  Google Scholar 

  31. Espelid O, Borve KJ (2002) J Catal 205:366–374

    Article  CAS  Google Scholar 

  32. Zhong L, Lee MY, Liu Z, Wanglee YJ, Liu B, Scott SL (2012) J Catal 293:1–12

    Article  CAS  Google Scholar 

  33. Wright AF, Leadbetter AJ (1975) Philos Mag 31:1391–1401

    Article  CAS  Google Scholar 

  34. Handzlik J (2007) J Phys Chem C 111:9337–9348

    Article  CAS  Google Scholar 

  35. Mortensen JJ, Parrinello M (2000) J Phys Chem B 104:2901–2907

    Article  CAS  Google Scholar 

  36. Solans-Monfort X, Filhol JS, Copéret C, Eisenstein O (2006) New J Chem 30:842–850

    Article  CAS  Google Scholar 

  37. Mian SA, Saha LC, Jang J, Wang L, Gao X, Nagase S (2010) J Phys Chem C 114:20793–20800

    Article  CAS  Google Scholar 

  38. Handzlik J (2009) Chem Phys Lett 469:140–144

    Article  CAS  Google Scholar 

  39. Handzlik J, Kurleto K (2013) Chem Phys Lett 561–562:87–91

    Article  Google Scholar 

  40. Espelid O, Borve KJ (2000) J Catal 195:125–139

    Article  CAS  Google Scholar 

  41. Espelid O, Borve KJ (2002) J Catal 206:331–338

    Article  CAS  Google Scholar 

  42. Zhong L, Liu Z, Cheng R, Tang S, Qiu P, He X, Terano M, Liu B (2012) ChemCatChem 4:872–881

    Article  CAS  Google Scholar 

  43. Conley MP, Delley MF, Núñez-Zarur F, Comas-Vives A, Copéret C (2015) Inorg Chem 54:5065–5078

    Article  CAS  Google Scholar 

  44. Fong A, Yuan Y, Ivry SL, Scott SL, Peters B (2015) ACS Catal 5:3360–3374

    Article  CAS  Google Scholar 

  45. Adamo C, Barone VJ (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  46. Weigand F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  Google Scholar 

  47. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  48. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  49. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104/1–154104/19

    Article  CAS  Google Scholar 

  50. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D. 01; Gaussian, Inc.: Wallingford

  52. Dennington R, Keith T, Millam JM (2009) GaussView, Version 5. Semichem Inc, Shawnee Mission

    Google Scholar 

  53. Redhead PA (1962) Vacuum 12:203–211

    Article  CAS  Google Scholar 

  54. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Commun 96:3327–3349

    CAS  Google Scholar 

  55. NIST Chemistry WebBook (2011) National Institute of Standards and Technology http://webbook.nist.gov/chemistry/

  56. Vuurman M, Wachs IE, Stufkens DJ, Oskam A (1993) J Mol Catal 80:209–227

    Article  CAS  Google Scholar 

  57. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, England

    Google Scholar 

  58. Handzlik J, Grybos R, Tielens F (2013) J Phys Chem C 117:8138–8149

    Article  CAS  Google Scholar 

  59. Baker LM, Carrick WL (1968) J Org Chem 33:616–618

    Article  CAS  Google Scholar 

  60. Liu B, Nakatani H, Terano M (2002) J Mol Catal A 184:387–398

    Article  CAS  Google Scholar 

  61. McDaniel MP, Collins KS, Benham EA, Cymbaluk TH (2008) Appl Catal A 335:252–261

    Article  CAS  Google Scholar 

  62. McDaniel MP, Collins KS, Benham EA, Cymbaluk TH (2008) Appl Catal A 335:180–186

    Article  CAS  Google Scholar 

  63. Peters B, Scott SL, Fong A, Wang Y, Stiegman AE (2015) PNAS 112:E4160–E4161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. Chakrabarti and I. E. Wachs would like to acknowledge Professor A. I. Frenkel and Y. Li (Department of Physics, Yeshiva University) for assistance with the XAS collection and analysis. They acknowledge the facilities support provided at the National Synchrotron Light Source at Brookhaven National Laboratory (U. S. DOE BES, Contract No. DE-SC1112704) and the Synchrotron Catalysis Consortium (U. S. DOE BES, Grant No. DE-SC0012335). They would also like to acknowledge Dr. Christopher Keturakis for the use of his XAS data of the reference compounds. The computational research was supported in part by PL-Grid Infrastructure. Other computing resources from Academic Computer Centre CYFRONET AGH (grants MNiSW/IBM_BC_HS21/PK/003/2013 and MNiSW/IBM_BC_HS21/PK/037/2014) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel E. Wachs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, A., Gierada, M., Handzlik, J. et al. Operando Molecular Spectroscopy During Ethylene Polymerization by Supported CrO x /SiO2 Catalysts: Active Sites, Reaction Intermediates, and Structure-Activity Relationship. Top Catal 59, 725–739 (2016). https://doi.org/10.1007/s11244-016-0546-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0546-6

Keywords

Navigation