Skip to main content
Log in

Activity of Molybdenum Oxide Catalyst Supported on Al2O3, TiO2, and SiO2 Matrix in the Oxidative Dehydrogenation of n-Butane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic oxidative dehydrogenation (ODH) of light alkanes has great potential to be used for production of alkenes instead of classically used steam cracking of naphtha. We report for the first time a comparison of molybdenum oxide species supported on three different industrially relevant mesoporous supports—Al2O3, SiO2 and TiO2 in ODH of n-butane. All samples were prepared by wet impregnation and characterized by ICP-EOS for determination of molybdenum content, XRD and N2-adsorption for study of morphology and texture, H2-TPR and DR UV–vis spectroscopy for determination of molybdenum complex speciation and by NH3-TPD for study of acidity. All prepared materials were tested in n-butane ODH reaction at 540 °C and iso-conversion conditions. The molybdenum oxide supported on alumina exhibited the extraordinary high productivity (1.16 kgprod kg −1cat  h−1) in ODH of n-butane which is one of the five highest C4-deh productivity values which were published for ODH of n-butane in open literature. Moreover, this catalyst exhibit high selectivity to 1,3-butadine in comparison with other catalysts tested in n-butane ODH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sporcic E, Ring K (2005) Sri Consulting. http://www.sriconsulting.com/CEH/Public/Reports/440.0000/. Accessed 12 Dec 2009

  2. Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113–131

    Article  CAS  Google Scholar 

  3. Matar S, Mirbach MJ, Tayim HA (1989) Catalysis in petrochemical processes. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  4. Mamedov EA, Corberan VC (1995) Appl Catal A-Gen 127:1–40

    Article  CAS  Google Scholar 

  5. Centi G, Cavani F, Trifiró F (2001) Selective oxidation by heterogeneous catalysis. Kluwer Academic, New York

    Book  Google Scholar 

  6. Dahlmann M, Grub J, Löser E (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  7. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) ChemSusChem. 6:1595–1614

    Article  CAS  Google Scholar 

  8. Setnicka M, Cicmanec P, Tvaruzkova E, Bulanek R (2013) Top Catal 56:662–671

    Article  CAS  Google Scholar 

  9. Hoj M, Kessler T, Beato P, Jensen AD, Grunwaldt JD (2014) Appl Catal A-Gen 472:29–38

    Article  Google Scholar 

  10. Setnicka M, Cicmanec P, Bulanek R, Zukal A, Pastva J (2014) Catal Lett 144:50–55

    Article  CAS  Google Scholar 

  11. Bulanek R, Kaluzova A, Setnicka M, Zukal A, Cicmanec P, Mayerova J (2012) Catal Today 179:149–158

    Article  CAS  Google Scholar 

  12. Bulánek R, Čičmanec P, Sheng-Yang H, Knotek P, Čapek L, Setnička M (2012) Appl Catal A 415–416:29–39

    Article  Google Scholar 

  13. Liu YM, Cao Y, Yan SR, Dai WL, Fan KN (2003) Catal Lett 88:61–67

    Article  CAS  Google Scholar 

  14. Knotek P, Capek L, Bulanek R, Adam J (2007) Top Catal 45:51–55

    Article  CAS  Google Scholar 

  15. Lopez JM (2006) Top Catal 41:3–15

    Article  Google Scholar 

  16. Dai HX, Bell AT, Iglesia E (2004) J Catal 221:491–499

    Article  CAS  Google Scholar 

  17. Setnička M, Čičmanec P, Pouzar M, Adam J (2008) Scientific papers of the University of Pardubice. Series A 14 (2008)

  18. Gazzoli D, De Rossi S, Ferraris G, Mattei G, Spinicci R, Valigi M (2009) J Mol Catal A-Chem 310:17–23

    Article  CAS  Google Scholar 

  19. Larese C, Campos-Martin JM, Calvino JJ, Blanco G, Fierro JLG, Kang ZC (2002) J Catal 208:467–478

    Article  CAS  Google Scholar 

  20. Dias APS, Dimitrov LD, Oliveira MCR, Zavoianu R, Fernandes A, Portela MF, Non-Cryst J (2010) Solids 356:1488–1497

    Google Scholar 

  21. Setnicka M, Cicmanec P, Bulanek R, Zukal A, Pastva J (2013) Catal Today 204:132–139

    Article  CAS  Google Scholar 

  22. Setnička M, Bulánek R, Čapek L, Čičmanec P (2011) J Mol Catal A-Chem 344:1–10

    Article  Google Scholar 

  23. Albonetti S, Cavani F, Trifiro F (1996) Catal Rev-Sci Eng 38:413–438

    Article  CAS  Google Scholar 

  24. Madeira LM, Portela MF (2002) Catal Rev-Sci Eng 44:247–286

    Article  CAS  Google Scholar 

  25. Chen K, Xie S, Bell AT, Iglesia E (2001) J Catal 198:232–242

    Article  CAS  Google Scholar 

  26. Heracleous E, Machli M, Lemonidou AA, Vasalos LA (2005) J Mol Catal A-Chem 232:29–39

    Article  CAS  Google Scholar 

  27. Solsona B, Dejoz A, Garcia T, Concepción P, Nieto JML, Vázquez MI, Navarro MT (2006) Catal Today 117:228–233

    Article  CAS  Google Scholar 

  28. Blasco T, Galli A, Nieto JML, Trifiro F (1997) J Catal 169:203–211

    Article  CAS  Google Scholar 

  29. Corma A, Nieto JML, Parades N, Dejoz A, Vazquez I (1994) In: Corberán VC, Bellón SV (eds), Studies in surface science and catalysis. Elsevier: New York 1994, pp 113–123

  30. Blasco T, Nieto JML (1997) Appl Catal A-Gen 157:117–142

    Article  CAS  Google Scholar 

  31. Piquemal JY, Manoli JM, Beaunier P, Ensuque A, Tougne P, Legrand AP, Bregeault JM (1999) Microporous Mesoporous Mat 29:291–304

    Article  CAS  Google Scholar 

  32. Mares F, Jacobson SE, Tang RT (1891) Patent Number US 4259527

  33. Wachs IE (1996) Catal Today 27:437–455

    Article  CAS  Google Scholar 

  34. Čapek L, Adam J, Grygar T, Bulánek R, Vradman L, Kosova-Kucerová G, Čičmanec P, Knotek P (2008) Appl Catal A-Gen 342:99–106

    Article  Google Scholar 

  35. Sachtler WMH, De Boer NH (1964) In: Proceedings of 3rd International Congr. Catalysis. North-Holland Publishing Company: Amsterdam, p 8

  36. Tsilomelekis G, Christodoulakis A, Boghosian S (2007) Catal Today 127:139–147

    Article  CAS  Google Scholar 

  37. Xie SB, Chen KD, Bell AT, Iglesia E (2000) J Phys Chem B 104:10059–10068

    Article  CAS  Google Scholar 

  38. Edwards JC, Adams RD, Ellis PD (1990) J Am Chem Soc 112:8349–8364

    Article  CAS  Google Scholar 

  39. Abello MC, Gomez MF, Casella M, Ferretti OA, Banares MA, Fierro JLG (2003) Appl Catal A-Gen 251:435–447

    Article  CAS  Google Scholar 

  40. Li LC, Wang YF, Shi KZ, Chen SS, Yang ZH, Lu XH (2012) Catal Lett 142:480–485

    Article  CAS  Google Scholar 

  41. Karakoulia SA, Triantafyllidis KS, Lemonidou AA (2008) Microporous Mesoporous Mat 110:157–166

    Article  CAS  Google Scholar 

  42. Harlin ME, Backman LB, Krause AOI, Jylha OJT (1999) J Catal 183:300–313

    Article  CAS  Google Scholar 

  43. Duan AJ, Wan GF, Zhao Z, Xu CM, Zheng YY, Zhang Y, Dou T, Bao XJ, Chung K (2007) Catal Today 119:13–18

    Article  CAS  Google Scholar 

  44. Lee EL, Wachs IE (2007) J Phys Chem C 111:14410–14425

    Article  CAS  Google Scholar 

  45. Weber RS (1995) J Catal 151:470–474

    Article  CAS  Google Scholar 

  46. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, London

    Book  Google Scholar 

  47. Wojdyr M (2010) J Appl Crystallogr 43:1126–1128

    Article  CAS  Google Scholar 

  48. Lou YC, Wang HC, Zhang QH, Wang Y (2007) J Catal 247:245–255

    Article  CAS  Google Scholar 

  49. Arena F, Parmaliana A (1996) J Phys Chem 100:19994–20005

    Article  CAS  Google Scholar 

  50. Karslioglu O, Song X, Kuhlenbeck H, Freund H (2013) Top Catal 56:1389–1403

    Article  CAS  Google Scholar 

  51. Ajayi BP, Jermy BR, Abussaud BA, Al-Khattaf S (2013) J Porous Mat 20:1257–1270

    Article  CAS  Google Scholar 

  52. Raju G, Reddy BM, Abhishek B, Mo YH (2012) Appl Catal A-Gen 423:168–175

    Article  Google Scholar 

  53. Callahan JL, Grasselli RK (1963) AIChE J 9:755–760

    Article  CAS  Google Scholar 

  54. Grasselli RK (2014) Catal Today 238:10–27

    Article  CAS  Google Scholar 

  55. Grasselli RK (2001) Top Catal 15:93–101

    Article  CAS  Google Scholar 

  56. Lemonidou AA (2001) Appl Catal A-Gen 216:277–284

    Article  CAS  Google Scholar 

  57. Owens L, Kung HH (1993) J Catal 144:202–213

    Article  CAS  Google Scholar 

  58. Wang D, Barteau MA (2001) J Catal 197:17–25

    Article  CAS  Google Scholar 

  59. Kung HH (1994) Advances in catalysis, vol 40. Academic Press Inc, San Diego, pp 1–38

    Google Scholar 

  60. Wegrzyn A, Rafalska-Lasocha A, Dudek B, Dziembaj R (2006) Catal Today 116:74–81

    Article  CAS  Google Scholar 

  61. Toledo JA, Armendariz H, Lopez-Salinas E (2000) Catal Lett 66:19–24

    Article  CAS  Google Scholar 

  62. Santacesaria E, Cozzolino M, Di Serio M, Venezia AM, Tesser R (2004) Appl Catal A: General 270:177–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Czech Science Foundation for financial support (Centre of Excellence—P106/12/G015). In the Research Institute of Inorganic Chemistry, the Project (P106/12/G015) is being carried out in the UniCRE centre (CZ.1.05/2.1.00/03.0071) whose infrastructure was supported by the European Regional Development Fund and the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Setnička.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setnička, M., Tišler, Z., Kubička, D. et al. Activity of Molybdenum Oxide Catalyst Supported on Al2O3, TiO2, and SiO2 Matrix in the Oxidative Dehydrogenation of n-Butane. Top Catal 58, 866–876 (2015). https://doi.org/10.1007/s11244-015-0453-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0453-2

Keywords

Navigation