Skip to main content
Log in

Non-invasive Estimation of Pressure Drop Across Aortic Coarctations: Validation of 0D and 3D Computational Models with In Vivo Measurements

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Blood pressure gradient (\(\Delta P\)) across an aortic coarctation (CoA) is an important measurement to diagnose CoA severity and gauge treatment efficacy. Invasive cardiac catheterization is currently the gold-standard method for measuring blood pressure. The objective of this study was to evaluate the accuracy of \(\Delta P\) estimates derived non-invasively using patient-specific 0D and 3D deformable wall simulations. Medical imaging and routine clinical measurements were used to create patient-specific models of patients with CoA (N = 17). 0D simulations were performed first and used to tune boundary conditions and initialize 3D simulations. \(\Delta P\) across the CoA estimated using both 0D and 3D simulations were compared to invasive catheter-based pressure measurements for validation. The 0D simulations were extremely efficient (\(\sim\) 15 s computation time) compared to 3D simulations (\(\sim\) 30 h computation time on a cluster). However, the 0D \(\Delta P\) estimates, unsurprisingly, had larger mean errors when compared to catheterization than 3D estimates (12.1 ± 9.9 mmHg vs 5.3 ± 5.4 mmHg). In particular, the 0D model performance degraded in cases where the CoA was adjacent to a bifurcation. The 0D model classified patients with severe CoA requiring intervention (defined as \(\Delta P\) \(\ge\) 20 mmHg) with 76% accuracy and 3D simulations improved this to 88%. Overall, a combined approach, using 0D models to efficiently tune and launch 3D models, offers the best combination of speed and accuracy for non-invasive classification of CoA severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during this study are available in the Vascular Model Repository (vascularmodel.org).

References

  1. Singh, S., F. A. Hakim, A. Sharma, R. R. Roy, P. M. Panse, K. Chandrasekaran, J. R. Alegria, and F. Mookadam. Hypoplasia, pseudocoarctation and coarctation of the aorta–a systematic review. Heart Lung Circ. 24(2):110–118, 2015. https://doi.org/10.1016/j.hlc.2014.08.006.

    Article  PubMed  Google Scholar 

  2. Torok, R. D., M. J. Campbell, G. A. Fleming, and K. D. Hill. Coarctation of the aorta: management from infancy to adulthood. World J. Cardiol. 7(11):765–775, 2015. https://doi.org/10.4330/wjc.v7.i11.765.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bashore, T. M., J. S. Child, H. M. Connolly, J. A. Dearani, P. Nido, J. W. Fasules, T. P. Graham, Z. M. Hijazi, S. A. Hunt, M. Etta King, M. J. Landzberg, P. D. Miner, M. J. Radford, E. P. Walsh, G. D. Webb, C. D. Adams, J. L. Anderson, E. M. Antman, C. E. Buller, M. A. Creager, S. M. Ettinger, J. L. Halperin, H. M. Krumholz, F. G. Kushner, B. W. Lytle, R. A. Nishimura, R. L. Page, B. Riegel, L. G. Tarkington, and C. W. Yancy. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease. Circulation. 118(23):714–833, 2008. https://doi.org/10.1161/CIRCULATIONAHA.108.190690.

    Article  Google Scholar 

  4. Jenkins, N. P., and C. Ward. Coarctation of the aorta: natural history and outcome after surgical treatment. QJM. 92(7):365–371, 1999. https://doi.org/10.1093/qjmed/92.7.365.

    Article  CAS  PubMed  Google Scholar 

  5. Therrien, J., C. Warnes, L. Daliento, J. Hess, A. Hoffmann, A. Marelli, U. Thilen, P. Presbitero, J. Perloff, J. Somerville, and G. D. Webb. Canadian Cardiovascular Society Consensus Conference 2001 update: recommendations for the management of adults with congenital heart disease part III. Can. J. Cardiol. 17(11):1135–1158, 2001.

    CAS  PubMed  Google Scholar 

  6. Seifert, B. L., K. DesRochers, M. Ta, G. Giraud, M. Zarandi, M. Gharib, and D. J. Sahn. Accuracy of Doppler methods for estimating peak-to-peak and peak instantaneous gradients across coarctation of the aorta: an in vitro study. J. Am. Soc. Echocardiogr. 12(9):744–753, 1999. https://doi.org/10.1016/s0894-7317(99)70025-8.

    Article  CAS  PubMed  Google Scholar 

  7. Itu, L., P. Sharma, K. Ralovich, V. Mihalef, R. Ionasec, A. Everett, R. Ringel, A. Kamen, and D. Comaniciu. Non-invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements. Ann. Biomed. Eng. 41(4):669–681, 2013. https://doi.org/10.1007/s10439-012-0715-0.

    Article  PubMed  Google Scholar 

  8. Grande Gutierrez, N., M. Mathew, B. W. McCrindle, J. S. Tran, A. M. Kahn, J. C. Burns, and A. L. Marsden. Hemodynamic variables in aneurysms are associated with thrombotic risk in children with Kawasaki disease. Int. J. Cardiol. 281:15–21, 2019. https://doi.org/10.1016/j.ijcard.2019.01.092.

    Article  PubMed  Google Scholar 

  9. Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137(2):394–403, 2009. https://doi.org/10.1016/j.jtcvs.2008.06.043.

    Article  PubMed  Google Scholar 

  10. Kwon, S., J. A. Feinstein, R. J. Dholakia, and J. F. LaDisa. Quantification of local hemodynamic alterations caused by virtual implantation of three commercially available stents for the treatment of aortic coarctation. Pediatr. Cardiol. 35:732–740, 2014. https://doi.org/10.1007/s00246-013-0845-7.

    Article  PubMed  Google Scholar 

  11. Wei, Z. A., C. Johnson, P. Trusty, M. Stephens, W. Wu, R. Sharon, B. Srimurugan, B. P. Kottayil, G. S. Sunil, and M. A. Fogel. Comparison of Fontan surgical options for patients with apicocaval juxtaposition. Pediatr. Cardiol. 41:1021–1030, 2020. https://doi.org/10.1007/s00246-020-02353-8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Celestin, C., M. Guillot, N. Ross-Ascuitto, and R. Ascuitto. Computational fluid dynamics characterization of blood flow in central aorta to pulmonary artery connections: importance of shunt angulation as a determinant of shear stressinduced thrombosis. Pediatr. Cardiol. 36:600–615, 2015. https://doi.org/10.1007/s00246-014-1055-7.

    Article  PubMed  Google Scholar 

  13. Saitta, S., S. Pirola, F. Piatti, E. Votta, F. Lucherini, F. Pluchinotta, M. Carminati, M. Lombardi, C. Geppert, F. Cuomo, C. A. Figueroa, X. Y. Xu, and A. Redaelli. Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations. J. Biomech. 94:13–21, 2019. https://doi.org/10.1016/j.jbiomech.2019.07.004.

    Article  PubMed  Google Scholar 

  14. Aslan, S., P. Mass, Y.-H. Loke, L. Warburton, X. Liu, N. Hibino, L. Olivieri, and A. Krieger. Non-invasive prediction of peak systolic pressure drop across coarctation of aorta using computational fluid dynamics. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2020, 2020, pp. 2295–2298. https://doi.org/10.1109/EMBC44109.2020.9176461..

  15. LaDisa, J. F., C. Alberto Figueroa, I. E. Vignon-Clementel, H. Jin Kim, N. Xiao, L. M. Ellwein, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Computational simulations for aortic coarctation: representative results from a sampling of patients. J. Biomech. Eng. 2011. https://doi.org/10.1115/1.4004996.

    Article  PubMed  PubMed Central  Google Scholar 

  16. O’Rourke, M. F., and T. B. Cartmill. Influence of aortic coarctation on pulsatile hemodynamics in the proximal aorta. Circulation. 44(2):281–292, 1971. https://doi.org/10.1161/01.cir.44.2.281.

    Article  PubMed  Google Scholar 

  17. Shahid, L., J. Rice, H. Berhane, C. Rigsby, J. Robinson, L. Griffin, M. Markl, and A. Roldán-Alzate. Enhanced 4D flow MRI-based CFD with adaptive mesh refinement for flow dynamics assessment in coarctation of the aorta. Ann. Biomed. Eng. 50(8):1001–1016, 2022. https://doi.org/10.1007/s10439-022-02980-7.

    Article  PubMed  Google Scholar 

  18. Goubergrits, L., E. Riesenkampff, P. Yevtushenko, J. Schaller, U. Kertzscher, A. Hennemuth, F. Berger, S. Schubert, and T. Kuehne. MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta. J. Magn. Reson. Imaging. 41(4):909–916, 2015. https://doi.org/10.1002/jmri.24639.

    Article  PubMed  Google Scholar 

  19. Brüning, J., F. Hellmeier, P. Yevtushenko, T. Kühne, and L. Goubergrits. Uncertainty quantification for non-invasive assessment of pressure drop across a coarctation of the aorta using CFD. Cardiovasc. Eng. Technol. 9:582–596, 2018. https://doi.org/10.1007/s13239-018-00381-3.

    Article  PubMed  Google Scholar 

  20. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28(7):845–856, 1995. https://doi.org/10.1016/0021-9290(95)95273-8.

    Article  CAS  PubMed  Google Scholar 

  21. Formaggia, L., J.-F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7):561–582, 2001. https://doi.org/10.1016/S0045-7825(01)00302-4.

    Article  Google Scholar 

  22. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006. https://doi.org/10.1016/j.cma.2005.

    Article  Google Scholar 

  23. Marsden, A. L., and E. Kung. Multiscale modeling of cardiovascular flows. In: Computational Bioengineering. Boca Raton: CRC Press, pp. 176–203, 2015.

  24. Westerhof, N., J.-W. Lankhaar, and B. E. Westerhof. The arterial windkessel. Med. Biol. Eng. Comput. 47(2):131–141, 2009.

    Article  PubMed  Google Scholar 

  25. Pfaller, M. R., J. Pham, A. Verma, L. Pegolotti, N. M. Wilson, D. W. Parker, W. Yang, and A. L. Marsden. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. Int. J. Numer. Methods Biomed. Eng. 38(10):3639, 2022. https://doi.org/10.1002/cnm.3639.

    Article  Google Scholar 

  26. Keshavarz-Motamed, Z., J. Garcia, and L. Kadem. Fluid dynamics of coarctation of the aorta and effect of bicuspid aortic valve. PLoS ONE. 8(8):72394, 2013.

    Article  Google Scholar 

  27. Martin, A., H. Corbineau, J. P. Verhoye, M. Lederlin, and A. Drochon. Collateral flows in patients with aortic coarctation: a clinical and biomechanical study. HSOA J. Non Invasive Vasc. Investig. 2:1–7, 2017.

    Article  Google Scholar 

  28. Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45(3):525–541, 2017. https://doi.org/10.1007/s10439016-1762-8.

    Article  PubMed  Google Scholar 

  29. Mirramezani, M., and S. C. Shadden. A distributed lumped parameter model of blood flow. Ann. Biomed. Eng. 48(12):2870–2886, 2020. https://doi.org/10.1007/s10439-020-02545-6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mirramezani, M., S. L. Diamond, H. I. Litt, and S. C. Shadden. Reduced order models for transstenotic pressure drop in the coronary arteries. J. Biomech. Eng. 141(3):031005, 2019. https://doi.org/10.1115/1.4042184.

    Article  PubMed  Google Scholar 

  31. Steele, B. N., J. Wan, J. P. Ku, T. J. R. Hughes, and C. A. Taylor. In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans. Biomed. Eng. 50(6):649–656, 2003. https://doi.org/10.1109/TBME.2003.812201.

    Article  PubMed  Google Scholar 

  32. Pfaller, M. R., J. Pham, N. M. Wilson, D. W. Parker, and A. L. Marsden. On the periodicity of cardiovascular fluid dynamics simulations. Ann. Biomed. Eng. 49(12):3574–3592, 2021. https://doi.org/10.1007/s10439-02102796-x.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706, 2006. https://doi.org/10.1016/j.cma.2005.11.011.

    Article  Google Scholar 

  34. Filonova, V., C. J. Arthurs, I. E. Vignon-Clementel, and C. A. Figueroa. Verification of the coupled-momentum method with Womersley’s Deformable Wall analytical solution. Int. J. Numer. Methods Biomed. Eng. 36(2):3266, 2020. https://doi.org/10.1002/cnm.3266.

    Article  Google Scholar 

  35. Lan, I. S., J. Liu, W. Yang, J. Zimmermann, D. B. Ennis, and A. L. Marsden. Validation of the reduced unified continuum formulation against in vitro 4D-flow MRI. Ann. Biomed. Eng. 51(2):377–393, 2023. https://doi.org/10.1007/s10439-022-03038-4.

    Article  PubMed  Google Scholar 

  36. Kung, E. O., A. S. Les, C. A. Figueroa, F. Medina, K. Arcaute, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39:1947–1960, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Long, C. C., M. Hsu, Y. Bazilevs, J. A. Feinstein, and A. Marsden. Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Methods Biomed. Eng. 28(5):513–527, 2012.

    Article  CAS  Google Scholar 

  38. Lan, I. S., W. Yang, J. A. Feinstein, J. Kreutzer, R. T. Collins, M. Ma, G. T. Adamson, and A. L. Marsden. Virtual transcatheter interventions for peripheral pulmonary artery stenosis in Williams and Alagille syndromes. J. Am. Heart Assoc. 11(6):023532, 2022.

    Article  Google Scholar 

  39. Zhou, J., and Y. C. Fung. The degree of nonlinearity and anisotropy of blood vessel elasticity. Proc. Natl. Acad. Sci. 94(26):14255–14260, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Stanford Research Computing Center for computational resources (Sherlock HPC cluster). This work is supported by the Vera Moulton Wall Center for Pulmonary Vascular Disease at Stanford University, NIH grant R01LM013120, and NSF grant 2105345. PJN is supported by the National Science Foundation Graduate Research Fellowship (DGE-1656518) and MRP is supported by the Stanford Maternal and Child Health Research Institute and the National Institutes of Health (K99HL161313).

Author information

Authors and Affiliations

Authors

Contributions

PJN designed the study, performed the computational simulations and analysis, and drafted the manuscript; MRP implemented the 0D model formulation in SimVascular and supported the computational simulations and analysis; SAD extracted hemodynamic parameters from patient scans and supported the computational analysis; DBM provided patient data and clinical insights used to conceptualize this study; DBE provided overall supervision and advice to the research; ALM conceptualized the study and provided overall supervision to the research work. All authors have reviewed the final manuscript.

Corresponding author

Correspondence to Alison L. Marsden.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The electric analog network and corresponding resistance, capacitance, and inductance values of each segment in the 0D network for one representative patient (P-1) are listed below (Table 4; Fig. 9).

Table 4 Resistance, capacitance, inductance, and stenosis coefficient for branches and segments in the 0D circuit network
Fig. 9
figure 9

Electric analog network

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, P.J., Pfaller, M.R., Dual, S.A. et al. Non-invasive Estimation of Pressure Drop Across Aortic Coarctations: Validation of 0D and 3D Computational Models with In Vivo Measurements. Ann Biomed Eng 52, 1335–1346 (2024). https://doi.org/10.1007/s10439-024-03457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-024-03457-5

Keywords

Navigation