Skip to main content

Advertisement

Log in

Quantification of Local Hemodynamic Alterations Caused by Virtual Implantation of Three Commercially Available Stents for the Treatment of Aortic Coarctation

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Patients with coarctation of the aorta (CoA) are prone to morbidity including atherosclerotic plaque that has been shown to correlate with altered wall shear stress (WSS) in the descending thoracic aorta (dAo). We created the first patient-specific computational fluid dynamics (CFD) model of a CoA patient treated by Palmaz stenting to date, and compared resulting WSS distributions to those from virtual implantation of Genesis XD and modified NuMED CP stents, also commonly used for CoA. CFD models were created from magnetic resonance imaging, fluoroscopy and blood pressure data. Simulations incorporated vessel deformation, downstream vascular resistance and compliance to match measured data and generate blood flow velocity and time-averaged WSS (TAWSS) results. TAWSS was quantified longitudinally and circumferentially in the stented region and dAo. While modest differences were seen in the distal portion of the stented region, marked differences were observed downstream along the posterior dAo and depended on stent type. The Genesis XD model had the least area of TAWSS values exceeding the threshold for platelet aggregation in vitro, followed by the Palmaz and NuMED CP stents. Alterations in local blood flow patterns and WSS imparted on the dAo appear to depend on the type of stent implanted for CoA. Following confirmation in larger studies, these findings may aid pediatric interventional cardiologists in selecting the most appropriate stent for each patient, and ultimately reduce long-term morbidity following treatment for CoA by stenting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coogan JS, Chan FP, Taylor CA, Feinstein JA (2011) Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload. Catheter Cardiovasc Interv 77(5):680–691

    Article  PubMed  Google Scholar 

  2. Draney MT, Alley MA, Tang BT, Wilson NM, Herfkens RJ, Taylor CA (2002) Importance of 3D nonlinear gradient corrections for quantitative analysis of 3D MR angiographic data. In: International society for magnetic resonance in medicine, Honolulu, HI

  3. Duraiswamy N, Schoephoerster RT, Moore JE Jr (2009) Comparison of near-wall hemodynamic parameters in stented artery models. J Biomech Eng 131(6):061006

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ebeid MR (2003) Balloon expandable stents for coarctation of the aorta: review of current status and technical considerations. Images Pediatr Cardiol 15:25–41

    Google Scholar 

  5. Ferencz C, Rubin JD, McCarter RJ, Brenner JI, Neill CA, Perry LW, Hepner SI, Downing JW (1985) Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol 12(1):31–36

    Google Scholar 

  6. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706

    Article  Google Scholar 

  7. Forbes TJ, Rodriguez-Cruz E, Amin Z, Benson LN, Fagan TE, Hellenbrand WE, Latson LA, Moore P, Mullins CE, Vincent JA (2003) The Genesis stent: a new low-profile stent for use in infants, children, and adults with congenital heart disease. Catheter Cardiovasc Interv 59(3):406–414

    Article  PubMed  Google Scholar 

  8. Frydrychowicz A, Stalder AF, Russe MF, Bock J, Bauer S, Harloff A, Berger A, Langer M, Hennig J, Markl M (2009) Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J Magn Reson Imaging 30(1):77–84

    Article  PubMed  Google Scholar 

  9. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330(20):1431–1438

    Article  CAS  PubMed  Google Scholar 

  10. Gundert TJ, Shadden SC, Williams AR, Koo BK, Feinstein JA, Ladisa JF Jr (2011) A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models. Ann Biomed Eng 39(5):1423–1437

    Article  PubMed  Google Scholar 

  11. Harrison DA, McLaughlin PR, Lazzam C, Connelly M, Benson LN (2001) Endovascular stents in the management of coarctation of the aorta in the adolescent and adult: one year follow up. Heart 85:561–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hathcock JJ (2006) Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol 26(8):1729–1737

    Article  CAS  PubMed  Google Scholar 

  13. American Heart Association (2005) Heart disease and stroke statistics (2005) update. American Heart Association, Dallas

    Google Scholar 

  14. Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, Sakariassen KS (1997) Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 17(4):646–653

    Article  CAS  PubMed  Google Scholar 

  15. Karino T, Goldsmith HL (1984) Role of blood cell-wall interactions in thrombogenesis and atherogenesis: a microrheological study. Biorheology 21(4):587–601

    CAS  PubMed  Google Scholar 

  16. LaDisa JF Jr, Olson LE, Guler I, Hettrick DA, Audi SH, Kersten JR, Warltier DC, Pagel PS (2004) Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol 97:424–430

    Article  PubMed  Google Scholar 

  17. LaDisa JF Jr, Olson LE, Molthen RC, Hettrick DA, Pratt PF, Hardel MD, Kersten JR, Warltier DC, Pagel PS (2005) Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am J Physiol Heart Circ Physiol 288(5):H2465–H2475

    Article  CAS  PubMed  Google Scholar 

  18. LaDisa JF Jr, Alberto Figueroa C, Vignon-Clementel IE, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133(9):091008

    Article  PubMed  Google Scholar 

  19. LaDisa JF Jr, Figueroa CA, Vignon-Clementel IE, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133(9):091008

    Article  PubMed  Google Scholar 

  20. Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA (2010) Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 38(4):1288–1313

    Article  PubMed  Google Scholar 

  21. Magee AG, Brzezinska-Rajszys G, Qureshi SA, Rosenthal E, Zubrzycka M, Ksiazyk J, Tynan M (1999) Stent implantation for aortic coarctation and recoarctation. Heart 82:600–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Menon A, Eddinger TJ, Wang H, Wendell DC, Toth JM, Ladisa JF Jr (2012) Altered hemodynamics, endothelial function, and protein expression occur with aortic coarctation and persist after repair. Am J Physiol Heart Circ Physiol 303(11):H1304–H1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Muller J, Sahni O, Li X, Jansen KE, Shephard MS, Taylor CA (2005) Anisotropic adaptive finite element method for modeling blood flow. Comput Methods Biomech Biomed Engin 8(5):295–305

    Article  CAS  PubMed  Google Scholar 

  24. Murphy JB, Boyle FJ (2010) A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery. Biorheology 47(2):117–132

    PubMed  Google Scholar 

  25. O’Rourke MF, Cartmill TB (1971) Influence of aortic coarctation on pulsatile hemodynamics in the proximal aorta. Circulation 44(2):281–292

    Article  PubMed  Google Scholar 

  26. Ou P, Bonnet D, Auriacombe L, Pedroni E, Balleux F, Sidi D, Mousseaux E (2004) Late systemic hypertension and aortic arch geometry after successful repair of coarctation of the aorta. Eur Heart J 25(20):1853–1859

    Article  PubMed  Google Scholar 

  27. Perloff JK (2003) Coarctation of the aorta. Clinical recognition of congenital heart disease. Saunders, Philadelphia, pp 113–143

    Google Scholar 

  28. Redington AN, Hayes AM, Ho SY (1993) Transcatheter stent implantation to treat aortic coarctation in infancy. Br Heart J 69:80–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Biomech Biomed Engin 195:5634–5655

    Google Scholar 

  30. Shim D, Lloyd TR, Moorehead CP, Bove EL, Mosca RS, Beekman RH III (1997) Comparison of hospital charges for balloon angioplasty and surgical repair in children with native coarctation of the aorta. Am J Cardiol 79(8):1143–1146

    Article  CAS  PubMed  Google Scholar 

  31. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796

    Article  Google Scholar 

  32. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Engin 13(5):625–640

    Article  CAS  PubMed  Google Scholar 

  33. Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF Jr (2013) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35(6):723–735

    Article  PubMed  Google Scholar 

  34. Wentzel JJ, Whelan DM, van der Giessen WJ, van Beusekom HM, Andhyiswara I, Serruys PW, Slager CJ, Krams R (2000) Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech 33(10):1287–1295

    Article  CAS  PubMed  Google Scholar 

  35. Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO, Fuster V, Badimon JJ (2005) Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol 45(6):846–854

    Article  PubMed  Google Scholar 

  36. Wilson N, Wang K, Dutton R, Taylor CA (2001) A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect Notes Comput Sci 2208:449–456

    Article  Google Scholar 

  37. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4):502–514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Charles Taylor, Ph.D., Mary Draney, Ph.D., Frandics Chan, MD, Ph.D., Stanton Perry, MD, Nathan Wilson, Ph.D., Laura Ellwein, Ph.D., and Timothy Gundert, MS, for technical assistance. This work was supported by a Dean’s Postdoctoral Fellowship, the Vera Moulton Wall Center for Pulmonary Vascular Disease at the Stanford University School of Medicine, the Alvin and Marion Birnschein Foundation, NIH grant R15HL096096-01, and NSF awards OCI-0923037 and CBET-0521602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. LaDisa Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S., Feinstein, J.A., Dholakia, R.J. et al. Quantification of Local Hemodynamic Alterations Caused by Virtual Implantation of Three Commercially Available Stents for the Treatment of Aortic Coarctation. Pediatr Cardiol 35, 732–740 (2014). https://doi.org/10.1007/s00246-013-0845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-013-0845-7

Keywords

Navigation