Skip to main content

Advertisement

Log in

Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The main purpose of this study is to define the main variables that contribute to the occurrence of landslides in Kimi, Euboea, Greece, and to produce a landslide susceptibility map using the weight of evidence method. For the developed model, a sensitivity analysis is carried out in order to understand the model’s behavior when small changes are introduced in the weight value of the landslide-related variables. Landslide locations were identified from field surveys and interpretation of aerial photographs which resulted in the construction of an inventory map with 132 landslide events, while eight contributing variables were identified and exploited. All landslide-related variables were converted into a 5 × 5-m float-type raster file. These input-raster layers included a lithological unit layer, an elevation layer, a slope angle layer, a slope aspect layer, a distance from tectonic features layer, a distance from hydrographic network layer, a topographic wetness index layer, and a curvature layer. The validation of the developed model was achieved by using a subset of unprocessed landslide data, showing a satisfactory agreement between the expected and existing landslide susceptibility level, with the area under the predictive rate curve estimated to be 0.808. The area under the success rate curve was estimated to be 0.828 indicating a very high classification rate for existing landslide areas. According to the results of the sensitivity analysis, the lithological unit “yellowish gray to white marls” was the most sensitive as it had the highest change in the relative frequency of observed landslides. The overall outcomes of the performed analysis provide crucial knowledge in successful land use planning and management practice and also in risk reduction projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9(1):93–106

  • Akgun A, Sezer EA, Nefeslioglu HA, Gockeoglu C, Pradhan B (2012) An easy to use MATLAB program (MamLand) for the assessment of landslide susceptibility using Mamdami fuzzy algorithm. Comput Geosci 38(1):23–34

    Article  Google Scholar 

  • Akinci H, Dogan S, Kiligoclu C, Temiz MS (2011) Production of landslide susceptibility map of Samsun (Turkey) city centre by using frequency ration model. Int J Phys Sci 6(5):1015–1025

    Google Scholar 

  • Armas I (2012) Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat Hazards 60(3):937–950

    Article  Google Scholar 

  • Aubouin J (1957) Sur la Géologie de la bordure Méridionale de la plaine de Trikkala. Ann. Geol des P Hellen, 8, Athènes

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Babu SGL, Mukesh MD (2002) Characterization of soil spatial variability and its influence on slope stability. Indian Geotech J 32(2):123–145

    Google Scholar 

  • Barbieri G, Cambuli P (2009) The weight of evidence statistical method in landslide susceptibility mapping of the Rio Pardu Valley (Sardinia, Italy). In: Proceedings of the 18th World IMACS/MODSIM Congress Cairns Australia, pp 13–17

  • Bettian N, Birgit T (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24

    Article  Google Scholar 

  • Binaghi E, Luzi L, Madella P (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS, vol 13, Computer methods in the geosciences. Pergamon Press, Oxford, p 398

    Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg FP, Bonham-Carter GF (eds) Statistical applications in the earth science, Geological survey of Canada, paper 89–9, pp 171–183

  • Brabb EE (1984) Innovative approaches to landslide hazard mapping. In: Proceedings of the 4th International Symposium on Landslides, Toronto, 1:307–324

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara A (1984) Landslide hazard mapping: aims and methods. Mouvements de Terrains, Association Francaise Géographie Physique. Colloque de CAEN, pp 141–151

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16(5):427–445

    Article  Google Scholar 

  • Cervi F, Berti M, Borgatti L, Ronchetti F, Manenti F, Corsini A (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7(4):433–444

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411

    Article  Google Scholar 

  • Champati Ray PK, Dimri S, Lakhera RC, Sati S (2006) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4(2):101–111

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7(4):411–423

    Article  Google Scholar 

  • Chen Y, Yu J, Khan S (2010) Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ Model Softw 25:1582–1591

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65:1389–1399

    Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol - Bulletin de l’Association Internationale de Géologie de l’Ingénieur 43(1):27–29

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008) Predictive modeling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102:496–510

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomophology 42:213–238

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28:527–545

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  • Daniel C (1958) On varying one factor at a time. Biometrics 14:430–431

    Article  Google Scholar 

  • Daniel C (1973) One-at-a-time-plans. J Am Stat Assoc 68:353–360

    Article  Google Scholar 

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51:241–256

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area West Black Sea region, Turkey. Eng Geol 75(3–4):229–250

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65(3):2105–2128

    Article  Google Scholar 

  • Ghosh P, Huang L, Yu B, Tiwari RC (2009) Semiparametric Bayesian approaches to joinpoint regression for population-based cancer survival data. Comput Stat Data Anal 53:4073–4082

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide susceptibility-map of its near vicinity. Eng Geol 81(1):65–83

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Hervás J (2003) Lessons learnt from landslide disasters in Europe. Report EUR 20558 EN, European Commission, Ispra, Italy

  • Huma I, Radulescu D (1978) Automatic production of thematic maps of slope stability. Bull IAEG 11(17):95–99

    Google Scholar 

  • Hutchinson JN (1995) Keynote paper: landslide hazard assessment. Proceedings of 6th International Symposium on Landslides, Christchurch. Balkema, Rotterdam, pp 1805–1841

  • Ilia I (2013) Engineering geological features of marls in the wide area of Kimi, Euboea, their impact on construction problems and their treatment, PhD Thesis, National Technical University of Athens, School of Mining and Metallurgical Engineering, Athens, Greece, p 328

  • Ilia Ι, Koumantakis I, Rozos D, Markantonis K, Tsagaratos P (2008) Landslide phenomena in Kimi area, Euboea Island, Central Greece. EGU General Assembly, Vienna

  • Ilia I, Tsangaratos P, Koumantakis I, Rozos D (2010) Application of a Bayesian approach in GIS-based model for evaluating landslide susceptibility. Case study Kimi area, Euboea, Greece. Bull Geol Soc Greece 3:1590–1600

    Google Scholar 

  • Jaedicke C, Van Den Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Vangelsten BV, Smith JT, Tofani V, Ciurean R, Winter MG, Sverdrup-Thygeson K, Syre E, Smebye H (2014) Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull Eng Geol Environ 73:325–339

    Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Katsikatsos G (1976) La structure tectonique d’Attique et de l’ île d’ Eubée. Bull Soc Geol France 19:211–228

    Google Scholar 

  • Katsikatsos G (1991) Geological map of Greece, Aliveri sheet. I.G.M.E. (Institute of Geology and Mineral Exploration, gen. di. V. Andronopoulos)

  • Katsikatsos G, De Bruijn H, Van der Meulen AJ (1981) The Neogene of the island of Euboea (Evia), a review. Geol Mijnb 60:509–516

    Google Scholar 

  • Katsikatsos G, Mettos A, Vidakis M., Dounas A (1986) Geological map of Greece in scale1:50.000, “Athina-Elefsis” sheet, I.G.M.E. Publ., Athens

  • Kayastha P, Dhital MR, De Smedt F (2012) Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed. Nepal. Nat Hazards 63:479–498

    Article  Google Scholar 

  • Kemp LD, Bonham-Carter GF, Raines GL, Looney CG (1999) Arc-SDM: a review ex-tension for weight of evidence mapping. http://gis.nrcan.gc

  • Koukis G (1988) Peloponnesus: history, geology and engineering geology aspects. In: Marinos and Koukis (eds) Proceedings of int. symposium on the engineering geology of ancient works, monuments and historical sites, Greece, 4:2213–2234

  • Koukis G, Rozos D (1982) Geotechnical conditions and landslide movements in the Greek territory in relation to the geological structure and geotectonic evolution. Miner Wealth 16:53–69

    Google Scholar 

  • Koukis G, Sabatakakis N, Nikolaou N, Loupasakis C (2005) Landslides hazard zonation in Greece. In: Proceedings of open symposium on landslides risk analysis and sustainable disaster management by international consortium on landslides, Washington USA, 37:291–296

  • Kouli M, Loupasakis C, Soupios P, Rozos D, Vallianatos F (2014) Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece. Environ Earth Sci. doi:10.1007/s12665-014-3389-0

    Google Scholar 

  • Koumantakis I, Rozos D, Markantonis K, Ilia I, Tsagaratos P (2008) Landslide phenomena of Kimi Municipality. Research Program founded by the Prefecture of Euboea Island

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128

    Article  Google Scholar 

  • Lee S, Choi J (2004) Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int J Geogr Inf Sci 18:789–814

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazard and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–672

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50(6):847–855

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004a) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boeun, Korea. Int J Remote Sens 25:2037–2052

    Article  Google Scholar 

  • Lee S, Ryu J, Won J, Park H (2004b) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statistical approach to earthquake-induced landslide susceptibility. Eng Geol 100:43–58

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435

    Article  Google Scholar 

  • Maharaja R (1993) Landslide processes and landslide susceptibility analysis from an upland watershed: a case study from St.Andrew, Jamaica, West Indies. Eng Geol 34:53–79

    Article  Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2007) Weights of evidence modeling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhanda. Curr Sci 92:628–638

    Google Scholar 

  • Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20

    Article  Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. doi:10.1155/2010/901095, Article ID 901095

    Google Scholar 

  • Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment using weights-of-evidence applied on a study site at the Jurassic escarpment of the Swabian Alb (SW Germany). Geomorphology 86:12–24

    Article  Google Scholar 

  • Neuhauser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the Weights-of Evidence model. Landslides 9:511–528

    Article  Google Scholar 

  • OASP (2000) Greek seismic design code. OASP, Greek Ministry for Environmental Planning and Public Works, Athens, Greece (In Greek)

  • Oh JJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide susceptibility mapping in a tropical hilly area. Computers & Geosciences, Elsevier publication doi:10.1016/j.cageo.2010.10.012

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  • Park NW (2010) Application of Dempster–Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ Earth Sci 62(2):367–376

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (1994) Miocene magnesian andesites and dacites, Evia, Greece: adakites associated with subducting slab detachment and extension. Lithos 31:125–140

    Article  Google Scholar 

  • Poli S, Sterlacchini S (2007) Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique. Nat Resour Res 16(2):121–134

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural model focusing on different training sites. Int J Phys Sci 3(11):1–15

    Google Scholar 

  • Pradhan B, Lee S (2010a) Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Model Softw 25:747–759

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7:13–30

    Article  Google Scholar 

  • Pradhan B, Sezer E, Gokceoglu C, Buchroithner MF (2010) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE Trans Geosci Remote Sens 48(12):4164–4177

    Article  Google Scholar 

  • Raines GL, Bonham-Carter GF, Kemp L (2000) Predicting probabilistic modeling using Arcview GIS. Arcuser, April June, p 45–48

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115:172–187

    Article  Google Scholar 

  • Rozos D, Pyrgiotis L, Skias S, Tsagaratros P (2008) An implementation of rock engineering system for ranking the instability potential of natural slopes in Greek territory. An application in Karditsa County. Landslides 5:261–270

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Vassiliades E, Lainas S (2013) Landslide susceptibility zonation in Greece. Nat Hazards 65(1):523–543

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi mountains, Japan. Geomorphology 109(3–4):108–121

    Article  Google Scholar 

  • Sezer AE, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219

    Article  Google Scholar 

  • Shaked Y, Avigad D, Garfunkel Z (2000) Alpine high-pressure metamorphism at the Almyropotamos window (southern Evia, Greece). Geol Mag 137:367–380

    Article  Google Scholar 

  • Sharma M, Kumar R (2008) GIS-based landslide hazard zonation: a case study from the Parwanoo area, Lesser and Outer Himalaya, H.P., India. Bull Eng Geol Environ 67:129–137

    Article  Google Scholar 

  • Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probabilistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121(5):1337–1350

    Article  Google Scholar 

  • Tangestani MH (2009) A comparative study of Dempster-Shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW Iran. Asian J Earth Sci 35:66–73

    Article  Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59

    Article  Google Scholar 

  • Thiery Y, Maquaire O, Fressard M (2014) Application of expert rules in indirect approaches for landslide susceptibility assessment. Landslides 11(3):411–424

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012a) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96:28–40

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012b) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171–172:12–19

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012c) Landslide susceptibility assessment at Hoa Binh province of Vietnam using an adaptive neuro fuzzy inference system and GIS. Comput Geosci 45:199–211

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012d) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree and Naïve Bayes models. Math Probl Eng 2012:1–26

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2013) Regional prediction of landslide hazard in the Hoa Binh province (Vietnam) using probability analysis of intense rainfall. Nat Hazards 60(2):707–730

    Article  Google Scholar 

  • Tsangaratos P (2012) Research on the engineering geological behaviour of the geological formations by the use of Information Systems. Phd Thesis, Athens, Greece (In Greek) p 363

  • Tsangaratos P, Benardos A (2014) Estimating landslide susceptibility through an artificial neural network classifier. Nat Hazards 74(3):1489–1516

    Article  Google Scholar 

  • Tsangaratos P, Ilia I, Rozos D (2013) Case event system for landslide susceptibility analysis. In: Margottini, Canuti, Sassa (eds) Landslide science and practice. Springer, Berlin, pp 585–593

    Chapter  Google Scholar 

  • Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36:1101–1114

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Terlien M (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:4004–4414

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movements types and processes. RL Schuster, RL Krizek (Eds.) Landslides: Analysis and Control. Special Report 176, Transportation Research Board, National Academy of Sciences, Washington, D.C., pp 11–33

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, Paris, p 63

    Google Scholar 

  • Wan S (2009) A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng Geol 108(3–4):237–251

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Secondary topographic attributes. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 87–131

    Google Scholar 

  • Yeon YK, Han JG, Ryu KH (2010) Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol 16(3–4):274–283

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and Support Vector Machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Yilmaz C, Topal T, Suzen ML (2012) GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak Turkey). Environ Earth Sci 65(7):2161–2178

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editorial Office of Landslides Journal for editorial handling and also two anonymous reviewers for their helpful comments and suggestions that improved in quality the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Ilia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilia, I., Tsangaratos, P. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13, 379–397 (2016). https://doi.org/10.1007/s10346-015-0576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0576-3

Keywords

Navigation