Skip to main content

Advertisement

Log in

Landslide susceptibility zonation in Greece

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The objective of this study is to perform a preliminary national-scale assessment of the landslide susceptibility in Greece using a landslide inventory derived from historical archives. The effects of controlling factors on landslide susceptibility combined with multivariate statistics have been evaluated using GIS aided mapping techniques. Thousand six hundred thirty-five landslide occurrences, mainly earth slides obtained from Public Authorities archives, covering a long time period were recorded and digitally stored using a spatial relational database management system. Ten landslide predisposing factors (predictors) were identified, while digital thematic maps on the spatial distribution of those factors were generated. The correlation between the landslide locations and predictor classes was analyzed by using the Landslide Relative Frequency. R-mode factor analysis was applied to study the interrelations between predictors (independent variables) while weighting coefficients were determined. Landslide susceptibility was derived from an algorithm which modeled the influence of predictors, and a susceptibility map was compiled. The landslide susceptibility map was verified using a data set of 375 new landslide locations. It is the first comprehensive attempt to illustrate the landslide susceptibility in the total country based on the interpretation of historical data only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9(1):93–106. doi:10.1007/s10346-011-0283-7

    Article  Google Scholar 

  • Atkinson PM, Massari R (2011) Autologistic modelling of susceptibility to landsliding in the Central Apennines, Italy. Geomorphology 130(1–2):55–64. doi:10.1016/j.geomorph.2011.02.001

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigata Prefecture, Japan. Landslides 1:73–81. doi:10.1007/s10346-003-0006-9

    Article  Google Scholar 

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Proc Land 26:1251–1263. doi:10.1002/esp.263

    Article  Google Scholar 

  • Bliona M (2008) Recording of landslide occurrences in Greek territory. MSc Thesis, University of Patras, Department of Geology (Unpublished)

  • Brabb EE (1993) Priorities for landslide during the international decade of hazard reduction. In: Wagner P, Novosad S (eds) Landslides: 7th international conference and field workshop. Balkema, pp 7–14, 320

  • Brabb EE, Pampeyan EH, Bonilla M (1972) Landslide Susceptibility in the San Mateo County, California, scale 1:62,500. U.S. Geol Survey Misc Field Studies Map MF344

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzeti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Land 16:427–445

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzeti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzeti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411. doi:10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chau KT, Chan JE (2005) Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hong Kong Island. Landslides 2:280–290. doi:10.1007/s10346-005-0024-x

    Article  Google Scholar 

  • Christoulas S, Kalteziotis N, Gassios E, Sabatakakis N, Tsiambaos G (1988) Instability phenomena in weathered flysch in Greece. In: Proceedings of the 5th international symposium on landslides, Lausanne. Balkema, pp 103–108

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472. doi:10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48(4):349–364. doi:10.1016/S0169-555X(02)00079-X

    Article  Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406. doi:10.1007/s12665-010-0724-y

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides–investigation and mitigation. National Academy of Sciences, Transportation Research Board, Washington DC, Special Report 247, pp 36–75

  • Das I, Sahoo S, Van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114(4):627–637. doi:10.1016/j.geomorph.2009.09.023

    Article  Google Scholar 

  • Davis JC (1973) Statistics and data analysis in geology. Wiley, London

    Google Scholar 

  • Dobrovolny E (1971) Landslide susceptibility in and near Anchorage as interpreted from topographic and geologic maps. In: The great Alaska earthquake of 1964-Geology volume. Publication 1603. U.S. Geological Survey Open-File Report 86-329, National Academy of Sciences, USA, pp 735–745

  • Doutsos T, Kokkalas S (2001) Stress and deformation patterns in the Aegean region. J Struct Geol 23(2–3):455–472. doi:10.1016/S0191-8141(00)00119-X

    Article  Google Scholar 

  • Einstein HH (1988): Landslide risk assessment procedure. In: Proceedings of 5th international symposium on landslides, Special lecture, vol 2, pp 1075–1090

  • Ercanoglu M, Temiz AF (2011) Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey). Environ Earth Sci 64(4):949–964. doi:10.1007/s12665-011-0912-4

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C, Van Asch TWJ (2004) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32(1):1–23. doi:10.1023/B:NHAZ.0000026786.85589.4a

    Article  Google Scholar 

  • Evans NC, King JP (1998) The natural terrain landslide study–Debris Avalanche susceptibility. Technical Note TN 1/98, Geotechnical Engineering Office, Hong Kong SAR

  • Evans D, Plaut J, Stofan E (1997) Overview of the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) missions. Remote Sens Environ 59(2):135–140

    Article  Google Scholar 

  • Everitt B (1974) Cluster analysis. Heinemann, London

    Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31(2):261–272. doi:10.1139/t94-031

    Article  Google Scholar 

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS: application to the Contraviesa Area (Granada, Spain). Nat Hazards 30(3):297–308. doi:10.1023/B:NHAZ.0000007092.51910.3f

    Article  Google Scholar 

  • Gallart F, Clotel N (1988) Some aspects of the geomorphic processes triggered by an extreme rainfall event: the November 1982 flood in the Eastern Pyrenees. Catena Suppl 13:79–95

    Google Scholar 

  • Glade T, Crozier MJ (2005) The nature of landslide hazard impact. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, pp 43–47

    Chapter  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/SO169-555X(99)00078-1

    Article  Google Scholar 

  • Hadzinakos I, Yannacopoulos D, Faltsetas C, Ziourkas K (1991) Application of the MINORA decision support system to the evaluation of landslide favourability in Greece. Eur J Oper Res 50(1):61–75. doi:10.1016/0377-2217(91)90039-X

    Article  Google Scholar 

  • Hartlen J, Viberg L (1988) Evaluation of landslide hazard. In: Proceedings of 5th international symposium on landslides, vol 2, pp 1037–1058

  • Jöreskog KG, Klovan JE, Reyment RA (1976) Geological factor analysis. Elsevier Scientific Publishing Co, Amsterdam

    Google Scholar 

  • Komac M (2006) A landslide susceptibility model using analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74:17–28. doi:10.1016/j.geomorph.2005.07.005

    Article  Google Scholar 

  • Koukis G, Ziourkas C (1991) Slope instability phenomena in Greece: a statistical analysis. Bull Eng Geol Environ 43(1):47–60. doi:10.1007/BF02590170

    Article  Google Scholar 

  • Koukis G, Tsiambaos G, Sabatakakis N (1994) Slope movements in Greek territory: a statistical approach. In: Proceedings of the 7th international congress of IAEG, Lisboa, Balkema, pp 4621–4628

  • Koukis G, Tsiambaos G, Sabatakakis N (1996) Landslides in Greece: research evolution and quantitative analysis. In: Proceedings of the 7th international symposium on landslides, Trondheim, Balkema, pp 1935–1940

  • Koukis G, Tsiambaos G, Sabatakakis N (1997) Landslides movements in Greece: engineering geological characteristics and environmental consequences. In: Proceedings of the international symposium of engineering geology and environment, Athens, Balkema, vol 1, pp 789–792

  • Koukis G, Sabatakakis N, Nikolaou N, Loupasakis C (2005) Landslide hazard zonation in Greece. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides risk analysis and sustainable disaster management, part IV. Springer, Berlin. pp 291–296. doi: 10.1007/3-540-28680-2_37

  • Koukis G, Sabatakakis N, Ferentinou M, Lainas S, Alexiadou X, Panagopoulos A (2009) Landslide phenomena related to major fault tectonics: rift zone of Corinth Gulf, Greece. Bull Eng Geol Environ 68(2):215–229. doi:10.1007/s10064-008-0184-8

    Article  Google Scholar 

  • Koukis G, Sabatakakis N, Lainas S, Depountis N, Skias S (2010) Engineering geological investigation of heavy rainfall induced landslides in wildfire affected areas, western Greece. In: Williams et al. (eds) Geologically active. Proceedings of the 11th IAEG congress, Aukland, New Zealand, pp 331–338

  • Kouli M, Loupasakis C, Soupios P, Vallianatos F (2010) Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Nat Hazards 52:599–621. doi:10.1007/s11069-009-9403-2

    Article  Google Scholar 

  • Kumru MN, Bakac M (2003) R-mode factor analysis applied to the distribution of elements in soils from Aydin basin, Turkey. J Geochem Explor 77:81–91. doi:10.1016/S0375-6742(02)00271-6

    Article  Google Scholar 

  • Lee S, Evangelista DG (2006) Earthquake induced landslide susceptibility mapping using an artificial neural network. Nat Hazards Earth Syst Sci 6:687–695. doi:10.5194/nhess-6-687-2006

    Article  Google Scholar 

  • Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford Ltd, London

    Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40(9):1095–1113. doi:10.1007/s002540100310

    Article  Google Scholar 

  • Lee S, Talib JA (2004) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47(7):982–990. doi:10.1007/s00254-005-1228-z

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2006) The application of neural networks to landslide susceptibility mapping at Janghung Korea. Math Geol 38:199–220. doi:10.1007/s11004-005-9012-x

    Article  Google Scholar 

  • Lee S, Ryu JH, Kin IS (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression and artificial neural network models: case study of Youngin, Korea. Landslides 4:327–338. doi:10.1007/s10346-007-0088-x

    Article  Google Scholar 

  • Leroi E (1996) Landslide hazard-risk maps at different scales: objectives, tools and development. In: Proceedings of the 7th international symposium on landslides, Trondheim, Balkema, pp 35–51

  • Magliulo P (2010) Soil erosion susceptibility maps of the Janare Torrent Basin (southern Italy). J Maps, 435–447. doi:10.4113/jom.2010.1116

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435. doi:10.1007/s11069-008-9230-x

    Article  Google Scholar 

  • McCammon RB (1975) Concepts in geostatistics. Springer, Berlin

    Book  Google Scholar 

  • Mountrakis D, Sapountzis E, Kilias A, Elefteriadis G, Christofides G (1983) Paleogeographic conditions in the western Pelagonian margin in Greece during the initial rifting of the continental area. Can J Earth Sci 20:1673–1681

    Article  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sommez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191. doi:10.1916/j.enggeo.2008.01.004

    Article  Google Scholar 

  • Obial RC (1970) Cluster analysis as an aid in the interpretation of multi element geochemical data. Trans Inst Min Metall Sect B Appl Earth Sci 79:B175–B180

    Google Scholar 

  • Obial RC, James CH (1973) Use of cluster analysis in geochemical prospecting, with particular reference to southern Derbyshire, England. In: Jones MJ (ed) Geochemical exploration 1972. Institution of Mining and Metallurgy, London, pp 237–257

    Google Scholar 

  • Oh HJ, Lee S (2011) Cross-application used to validate landslide susceptibility maps using a probabilistic model from Korea. Environ Earth Sci 64(2):395–409. doi:10.1007/s12665-010-0864-0

    Article  Google Scholar 

  • Oh HJ, Lee S, Soedradjat GM (2010) Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ Earth Sci 60:1317–1328. doi:10.1007/s12665-009-0272-5

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343. doi:10.1016/S0013-7952(03)00069-3

    Article  Google Scholar 

  • Papadopoulos GA, Plessa A (2000) Magnitude–distance relations for earthquake–induced landslides in Greece. Eng Geol 58(3–4):377–386. doi:10.1016/S0013-7952(00)00043-0

    Article  Google Scholar 

  • Papatheodorou G, Demopoulou G, Lambrakis N (2006) A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecol Model 193:759–776. doi:10.1016/j.ecolmodel.2005.09.004

    Article  Google Scholar 

  • Papatheodorou G, Lambrakis N, Panagopoulos G (2007) Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrol Process 21:1482–1495. doi:10.1002/hyp.6322

    Article  Google Scholar 

  • Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Eng Geol 58(3–4):251–270. doi:10.1016/S0013-7952(00)00038-7

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7:13–30. doi:10.1007/s10346-009-0183-2

    Article  Google Scholar 

  • Radbruch DH (1970) Map of relative amounts of landslides in California. US Geological Survey Open-File Report 70-1485, 36 p, map scale 1:500,000. US Geological Survey Open-File Report 85–585

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115(1–2):172–187. doi:10.1016/j.geomorph.2009.10.002

    Article  Google Scholar 

  • Rickwood PC (1983) The use of cluster analysis in diverse geological problems. In: Augustithis SS (ed) The significance of trace elements in solving petrogenetic problems and controversies. Theophrastus Publications, Athens, pp 115–147

    Google Scholar 

  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114(3):129–142. doi:10.1016/j.geomorph.2009.06.020

    Article  Google Scholar 

  • Rozos D, Pyrgiotis L, Skias S, Tsagaratos P (2008) An implementation of rock engineering system for ranking the instability potential of natural slopes in Greek territory. An application in Karditsa County. Landslides 5(3):261–270. doi:10.1007/s10346-008-0117-4

    Article  Google Scholar 

  • Ruiz F, Gomis V, Blasco P (1990) Application of factor analysis to the hydro geochemical study of a coastal aquifer. J Hydrol 119(1–4):169–177. doi:10.1016/0022-1694(90)90041-U

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Mourtas D (2005) Composite landslides induced by heavy rainfalls in suburban areas: city of Patras and surrounding area, western Greece. Landslides 2:202–211. doi:10.1007/s10346-005-0002-3

    Article  Google Scholar 

  • Sakellariou MG, Ferentinou MD (2005) A study of slope stability prediction using neural networks. Geotech Geol Eng 23(4):419–445. doi:10.1007/s10706-004-8680-5

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, Paz A, Marturiá J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30(3):281–295. doi:10.1023/B:NHAZ.0000007169.28860.80

    Article  Google Scholar 

  • Sassa K, Wang G, Fukuoka H, Wang F, Ochiai T, Sugiyama M, Sekiguchi T (2004) Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides 1(3):221–235. doi:10.1007/s10346-004-0028-y

    Article  Google Scholar 

  • Spiker EC, Gori PL (2000) National landslide hazards mitigation strategy: a framework for loss reduction. Open-file report 00-450, Department of Interior, U.S.G.S., p 49

  • Spiker EC, Gori PL (2003a) Partnerships for reducing landslide risk: assessment of the national landslide hazards mitigation strategy. The National Academy of Sciences Press, Washington, DC

    Google Scholar 

  • Spiker EC, Gori PL (2003b) National landslide hazards mitigation strategy: a framework for loss reduction. U.S.G.S Circular 1244. US Department of Interior, U.S.G.S. Reston, Virginia, p 56

  • Sterlacchini S, Ballabio C, Blahut J, Masetti M, Sorichetta A (2011) Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology 125(1):51–61. doi:10.1016/j.geomorph.2010.09.004

    Article  Google Scholar 

  • Sűzen ML, Doyuran V (2004a) A comparison of GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679. doi:10.1007/s00254-003-0917-8

    Article  Google Scholar 

  • Sűzen ML, Doyuran V (2004b) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321. doi:10.1016/S0013-7952(03)00143-1

    Article  Google Scholar 

  • Tang T (2000) Slope profile analysis and classification on limestones residual hills in Guilin, China. Middle States Geogr 33:40–53

    Google Scholar 

  • Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France). Geomorphology 115(1–2):141–155. doi:10.1016/j.geomorph.2009.09.042

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation–why is it still so difficult? Bull Eng Geol Environ 65(2):167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, Paris, pp 1–63

    Google Scholar 

  • Vassiliades E (2010) Zonation of risk of landslide phenomena in the Hellenic territory. Development and application of models using geographical information systems. Ph.D. Thesis, University of Patras, Department of Geology (Unpublished)

  • WP/WLI (1990) A suggested method for reporting a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D Cruden) Bull Eng Geol Env 41(1):5–12. doi:10.1007/BF02590201

  • WP/WLI (1991) A suggested method for a landslide summary. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D Cruden) Bull Eng Geol Env 43:101–110. doi:10.1007/BF02590177

  • WP/WLI (1993) Multilingual landslide glossary. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D Cruden). BiTech, Richmond, p 59

  • WP/WLI (1994) A suggested method for reporting landslide causes. International Geotechnical Societies’ UNESCO Working Party for World Landslide Inventory (Chairman ME Popescu) Bull Eng Geol Env 50(1):71–74. doi:10.1007/BF02594958

  • WP/WLI (1995) A suggested method for describing the rate of movement of a landslide. International Geotechnical Societies’ UNESCO Working Party for World Landslide Inventory (Chairman ME Popescu) Bull Eng Geol Env 52(1):75–78. doi:10.1007/BF02602683

  • Yalcin A (2008) GIS–based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12. doi:10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138. doi:10.1016/j.cageo.2008.08.007

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous reviewers for their constructive suggestions and valuable comments that have improved the scientific quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sabatakakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabatakakis, N., Koukis, G., Vassiliades, E. et al. Landslide susceptibility zonation in Greece. Nat Hazards 65, 523–543 (2013). https://doi.org/10.1007/s11069-012-0381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0381-4

Keywords

Navigation