Skip to main content

Advertisement

Log in

Bio-organics Management: Novel Strategies to Manage Root-knot Nematode, Meloidogyne incognita Pest of Vegetable Crops

Biologisch-organische Bewirtschaftung: neue Strategien zur Bekämpfung des Wurzelgallennematoden Meloidogyne incognita als Schädling von Gemüsekulturen

  • Review Article / Übersichtsbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Root-knot nematodes (Meloidogyne spp.) are sedentary endoparasites and soil-borne pathogens worldwide. M. incognita is one of the most devastating and dominant species among them causing economic yield losses in almost all vegetables and other agricultural crops in the world. Current management strategies against M. incognita are not sufficient. However, from the last decades, utilization of nematicides has been increasing to manage this pest due to which environmental and human health issues arises. Bio-organic approaches are the best alternatives to nematicides, including biological agents and organic matters. In bio agents both arbuscular mycorrhizal and nematophagous fungi have a potent ability to manage plant-parasitic nematodes by inducing systemic resistance and activation of pathogenesis related (PR) genes in inoculated plants against nematodes, whereas nematophagous fungi trap nematodes for their feeding and killing them. Soil application of organic matters viz., botanical extract, oil cakes and agricultural wastes both in vitro and in vivo is also useful. Botanical extracts, oil cakes, kill nematodes by releasing secondary metabolites and inhibiting the movement of juveniles in the soil. Researchers from all over the world engage in evolving eco-friendly approaches that enhance and sustain the vegetable and agricultural production against this pest and keep it below the threshold level without affecting beneficial soil microbiota. In the future, such environment benign approaches have become an active field of research that adds new knowledge for their success against pest management, and enhancement of agricultural production for the human population.

Zusammenfassung

Wurzelgallennematoden (Meloidogyne spp.) sind sesshafte Endoparasiten und bodenbürtige Krankheitserreger weltweit. M. incognita ist eine der verheerendsten und dominantesten Arten unter ihnen und verursacht wirtschaftliche Ertragseinbußen bei fast allen Gemüsearten und anderen landwirtschaftlichen Kulturen in der Welt. Die derzeitigen Strategien zur Bekämpfung von M. incognita sind nicht ausreichend. In den letzten Jahrzehnten wurden jedoch immer mehr Nematizide zur Bekämpfung dieses Schädlings eingesetzt, was zu Problemen für die Umwelt und die menschliche Gesundheit führte. Bio-organische Ansätze sind die beste Alternative zu Nematiziden, einschließlich biologischer Wirkstoffe und organischer Stoffe. Bei den biologischen Wirkstoffen haben sowohl arbuskuläre Mykorrhizapilze als auch nematophage Pilze die Fähigkeit, pflanzenparasitäre Nematoden zu bekämpfen, indem sie eine systemische Resistenz und die Aktivierung von PR-Genen (pathogenesis related) in den beimpften Pflanzen gegen Nematoden induzieren, während nematophage Pilze die Nematoden einfangen, um sie zu fressen und zu töten. Der Einsatz von organischen Stoffen im Boden, d. h. Pflanzenextrakten, Ölkuchen und landwirtschaftlichen Abfällen, ist sowohl in vitro als auch in vivo nützlich. Pflanzenextrakte und Ölkuchen töten Nematoden ab, indem sie sekundäre Metaboliten freisetzen und die Bewegung von Jungtieren im Boden hemmen. Forscher aus der ganzen Welt arbeiten an der Entwicklung umweltfreundlicher Ansätze, die die Gemüse- und Agrarproduktion gegen diesen Schädling verbessern und aufrechterhalten, ohne die nützliche Bodenmikrobiota zu beeinträchtigen. In der Zukunft werden solche umweltfreundlichen Ansätze ein aktives Forschungsgebiet sein, das neue Erkenntnisse über den Erfolg bei der Schädlingsbekämpfung und der Verbesserung der landwirtschaftlichen Produktion für die menschliche Bevölkerung liefert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GalNac:

D-galactosamine N‑acetyl

GCs:

Giant cells

J2s:

Second stage juveniles

MAMPs:

Microbe-associated molecular pattern

MTI:

MAMPs triggered immunity

PPNs:

Plant parasitic nematodes

References

  • Abdulrahman O, Titilayo AM, Alhaji IA, Mamani JN, Onyekachi EE (2019) Nematicidal Activity of Aloe vera Extract/Exudates on Root-knot Nematodes (M. incognita) Associated with Tomato (Lycopersicun esculentum) Plant Growth Parameters. South Asian Journal of Parasitology, 2(4):1–5.

    Google Scholar 

  • Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springer Plus 1(1):1–10. https://doi.org/10.1186/2193-1801-1-73

    Article  Google Scholar 

  • Ahmad G, Khan A, Khan AA, Ali A, Mohhamad HI (2021) Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-021-01577-9

    Article  Google Scholar 

  • Ahman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68(7):3408–3415. https://doi.org/10.1128/AEM.68.7.3408-3415.2002

    Article  CAS  Google Scholar 

  • Alban R, Guerrero R, Toro M (2013) Interactions between a root knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). Am J Plant Sci 4(7A2):19–23. https://doi.org/10.4236/ajps.2013.47A2003

    Article  Google Scholar 

  • Archana S, Goswami BK (2017) Performance of leaves and their respective oil seed cakes on plant growth parameters and soil population of root knot nematode on okra. Plant Arch 17(2):1055–1057

    Google Scholar 

  • Ardakani AS, Hosyninejad SA, Pourshirzad A (2013) Killing effects of Myrtus communis L. essential oil on Meloidogyne incognita Research article. Int J Agric Crop Sci 5(8):806–810

    Google Scholar 

  • Asif M, Tariq M, Khan A, Siddiqui MA (2017) Biocidal and antinemic properties of aqueous extracts of Ageratum and Coccinia against root-knot nematode, Meloidogyne incognita in vitro. J Agric Sci 12(2):108–123. https://doi.org/10.4038/jas.v12i2.8229

    Article  Google Scholar 

  • Baheti BL, Bhati SS, Singh H (2019) Efficacy of different oil-cakes as soil amendment for the management of root-knot nematode, meloidogyne incognita infecting okra (Abelmoschus esculentus L.). Int J Curr Microbiol App Sci 8(12):799–808

    Article  CAS  Google Scholar 

  • Bakr RA, Ketta HA (2018) Nematicidal potential of some botanical products against Meloidogyne incognita infecting eggplant. Ind J Nematol 48(2):203–211

    Google Scholar 

  • Balogh J, Tunlid A, Rosen S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39:128–135

    Article  CAS  Google Scholar 

  • Barros AF, Campos VP, De Oliveira DF, De Jesus SF, Jardim IN, Costa VA, Silva GH (2019b) Activities of essential oils from three Brazilian plants and benzaldehyde analogues against Meloidogyne incognita. Nematology 21:1081–1089. https://doi.org/10.1163/15685411-00003276

    Article  CAS  Google Scholar 

  • Barros AF, Campos VP, de Paula LL, Oliveira DF, de Silva FJ, Terra WC, Salimena JP (2019a) Nematicidal screening of essential oils and potent toxicity of Dysphania ambrosioides essential oil against Meloidogyne incognita in vitro and in vivo. J Phytopathol 167(7–8):380–389. https://doi.org/10.1111/jph.12803

    Article  CAS  Google Scholar 

  • Basumatary B, Mahanta B, Borah A, Dutta P (2018) Assessment of yield losses due to Meloidogyne incognita on ivy gourd (Coccinea indica L.). Ind J Nematol 48(1):119–121

    Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141. https://doi.org/10.1016/j.scienta.2015.03.002

    Article  Google Scholar 

  • Bell CA, Lilley CJ, McCarthy J, Atkinson HJ, Urwin PE (2019) Plant-parasitic nematodes respond to root exudate signals with host-specific gene expression patterns. PLoS Pathog 15:1–19. https://doi.org/10.1371/journal.ppat.1007503

    Article  CAS  Google Scholar 

  • Bhati SSB, Baheti BL (2021) Estimation of avoidable losses caused by Meloidogyne incognita infecting cucumber in poly-house. J Agric Appl Biol 2(1):35–40. https://doi.org/10.11594/jaab.02.01.05

    Article  Google Scholar 

  • Bontempo AF, Lopes EA, Fernandes RH, Freitas LGD, Dallemole-Giaretta R (2017) Dose-response effect of Pochonia chlamydosporia against Meloidogyne incognita on carrot under field conditions. Rev Caatinga 30(1):258–262

    Article  Google Scholar 

  • Brahma U, Borah A (2016) Management of Meloidogyne incognita on pea with bioagents and organic amendment. Ind J Nematol 46(1):58–61

    Google Scholar 

  • Brito OD, Ferreira JC, Hernandes I, da Silva EJ, Dias-Arieira CR (2020) Management of Meloidogyne javanica on tomato using agro-industrial wastes. Nematology 22(10):1141–1154

    Article  CAS  Google Scholar 

  • Cayrol JC, Castet R, Samson RA (1986) Comparative activity of different Hirsutella species towards three plant parasitic nematodes. Rev Nematol 9(4):412–414

    Google Scholar 

  • Chan YL, He Y, Hsiao TT, Wang CJ, Tian Z, Yeh KW (2015) Pyramiding taro cystatin and fungal chitinase genes driven by a synthetic promoter enhances resistance in tomato to root-knot nematode Meloidogyne incognita. Plant Sci 231:74–81

    Article  CAS  Google Scholar 

  • Chandra P, Sao R, Gautam SK, Poddar AN (2010) Initial population density and its effect on the pathogenic potential and population growth of the root knot nematode Meloidogyne incognita in four species of cucurbits. Asian J Plant Pathol 4(1):1–15

    Article  Google Scholar 

  • Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a Nano carrier. ACS Nano 11(5):4719–4730

    Article  CAS  Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Article  Google Scholar 

  • Cooke RC (1962) The ecology of nematode-trapping fungi in the soil. Ann Appl Biol 50(3):507–513

    Article  Google Scholar 

  • Curtis R, Robinson A, Perry R (2009) Hatch and host location. In: Perry RN, Moens M, Starr JL (eds) Root- knot nematodes. CAB International, Wallingford, pp 139–162

    Chapter  Google Scholar 

  • D’Addabbo T, Argentieri MP, Żuchowski J, Biazzi E, Tava A, Oleszek W (2020) Activity of saponins from Medicago species against phytoparasitic nematodes. Plants 9:1–19. https://doi.org/10.3390/plants9040443

    Article  CAS  Google Scholar 

  • Damasceno JC, Soares AC, Jesus FN, Sant’Ana RS (2015) Sisal leaf decortication liquid residue for controlling Meloidogyne javanica in tomato plants. Hortic Bras 33:155–162. https://doi.org/10.1590/s0102-053620150000200004

    Article  Google Scholar 

  • Darekar KS, Mhase NL (1988) Assessment of yield losses due to root-knot nematode Meloidogyne incognita race 3 in tomato, brinjal and bittergourd. International nematology network newsletter

    Google Scholar 

  • Davis EL, Haegeman A, Kikuchi T (2011) Degradation of the plant cell wall by nematodes. In: Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 255–272

    Chapter  Google Scholar 

  • De la Peña E, Echeverría SR, Putten WH, Van Der Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840. https://doi.org/10.1111/j.1469-8137.2005.01602

    Article  Google Scholar 

  • Decraemer W, Hunt DJ (2013) Structure and classification. In: Perry RN, Moens M (eds) Plant Nematology, 2nd edn. CABI, Wallingford, pp 3–39

    Chapter  Google Scholar 

  • Den Akker SE, Birch PR (2016) Opening the effector protein toolbox for plant-parasitic cyst nematode interactions. Mol Plant 9(11):1451. https://doi.org/10.1016/j.molp.2016.09.008

    Article  CAS  Google Scholar 

  • Devi S, Das D (2016) Effect of organic amendments on root-knot nematode, Meloidogyne incognita in cucumber. Pest Manag Hortic Ecosyst 22(2):176–181

    Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288(1):31–45

    Article  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    Article  CAS  Google Scholar 

  • Duddington CL (1962) Predacious fungi and the control of eelworms. Viewpoints Biol 1:151–200

    Google Scholar 

  • El-Nagdi WMA, Youssef MMA, El-Ghonaimy AM (2017) Efficacy of some bio products and plant defence elicitors against root-knot nematode, Meloidogyne incognita infesting dry common bean, Phaseolus vulgaris. Sci Agric 18(2):38–44

    CAS  Google Scholar 

  • Elsen A, Baimey H, Swennen R, De Waele D (2003a) Relative mycorrhizal dependency and mycorrhiza nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibiliy. Plant Soil 256(2):303–313. https://doi.org/10.1023/A:1026150917522

    Article  CAS  Google Scholar 

  • Elsen A, Beeterens R, Swennen R, De Waele D (2003b) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils 38:367–376. https://doi.org/10.1007/s00374-003-0669-3

    Article  Google Scholar 

  • Escobar C, Barcala M, Cabrera J, Fenoll C (2015) Overview of root-knot nematodes and giant cells. Adv Bot Res 73:1–32

    Article  Google Scholar 

  • Fan JW, Hu CL, Zhang LN, Li ZL, Zhao FK, Wang SH (2015) Jasmonic acid mediates tomato’s response to root knot nematodes. J Plant Growth Regul 34(1):196–205

    Article  CAS  Google Scholar 

  • Fiorilli V, Catoni M, Francia D, Cardinale F, Lanfranco L (2011) The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infectedby Botrytis cinerea. J Plant Pathol 93:237–242.

    Google Scholar 

  • Forghani F, Hajihassani A (2020) Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front Plant Sci. 11:1125. https://doi.org/10.3389/fpls.2020.01125

    Article  Google Scholar 

  • Fujimoto T, Tomitaka Y, Abe H, Tsuda S, Futai K, Mizukubo T (2011) Jasmonic acid signaling pathway of Arabidopsis thaliana is important for root-knot nematode invasion. Nematol Res 41:9–17

    Article  Google Scholar 

  • Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6(1):1–11

    Google Scholar 

  • Gao X, Starr J, Göbel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M (2008) Maize 9‑lipoxygenase ZmLOX3 controls development, root-specific expression of defence genes, and resistance to root-knot nematodes. Mol Plant Microbe Interactions 21(1):98–109

    Article  CAS  Google Scholar 

  • Ghule TM, Singh A, Khan MR (2014) Root knot nematodes: threat to Indian agriculture. Pop Kheti 2(3):126–130

    Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012

  • Gowda TM, Rai AB, Singh B (2017) Technical bulletin No. 76. IIVR, Varanasi, p 32

    Google Scholar 

  • Gutjahr C, Paszkowski U (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4:204

    Article  Google Scholar 

  • Hajihassani A, Rutter WB, Schwarz T, Woldemeskel M, Ali ME, Hamidi N (2019) Characterization of resistance to major tropical root-knot nematodes (Meloidogyne spp.) in Solanum sisymbriifolium. Phytopathology 110:666–673. https://doi.org/10.1094/PHYTO-10-19-0393-R

    Article  Google Scholar 

  • Hallmann J, Davies KG, Sikora R (2009) Biological Control Using Microbial Pathogens, Endophytes and Antagonist. In: Root-knot nematodes, p 380

    Chapter  Google Scholar 

  • Hanawi MJ (2016) Tagetes erecta with native isolates of Paecilomyces lilacinus and Trichoderma hamatum in controlling root-knot nematode Meloidogyne javanica on tomato. Int J Appl Innovation Eng Manage 5(1):81–88

    Google Scholar 

  • Herrera-Parra E, Cristóbal-Alejo J, Ramos-Zapata JA (2017) Trichoderma strains as growth promoters in Capsicum annuum and as biocontrol agents in Meloidogyne incognita. Chil J Agric Res 77(4):318–324

    Article  Google Scholar 

  • Hore J, Roy K, Maiti AK (2018) Evaluation of Bio-Nematon (Purpureocillium lilacinum 1.15 % WP) against root-knot nematode (Meloidogyne incognita) in tomato. J Entomol Zool Stud 6(4):1700–1704

    Google Scholar 

  • Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW (2013) Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 23(1):83–86

    Article  CAS  Google Scholar 

  • Hunt DJ, Handoo ZA (2009) Taxonomy, identification and principal species. In: Perry RN, Moens M, Starr JL (eds) Root-knot Nematodes. Cap. 3. CAB International, Wallingford, pp 55–88

    Chapter  Google Scholar 

  • Hussain M, Zouhar M, Rysanek P (2018) Suppression of Meloidogyne incognita by the entomopathogenic fungus Lecanicillium muscarium. Plant Dis 102(5):977–982

    Article  Google Scholar 

  • Jain RK, Mathur KN, Singh RV (2007) Estimation of losses due to plant parasitic nematodes on different crops in India. Ind J Nematol 37(2):219–221

    Google Scholar 

  • Jamal Q, Cho JY, Moon JH, Munir S, Anees M, Kim KY (2017) Identification for the First Time of Cyclo (d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita. Molecules 22(11):1839

    Article  Google Scholar 

  • Jardim IN, Oliveira DF, Campos VP, Silva GH, Souza PE (2020) Garlic essential oil reduces the population of Meloidogyne incognita in tomato plants. Eur J Plant Pathol 157(1):197–209

    Article  CAS  Google Scholar 

  • Ji X, Li J, Meng Z, Dong S, Zhang S, Qiao K (2019) Inhibitory effect of allicin against Meloidogyne incognita and Botrytis cinerea in tomato. Sci Hortic 253:203–208

    Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–961

    Article  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664

    Article  CAS  Google Scholar 

  • Kalaiselvi D, Mohankumar A, Shanmugam G, Thiruppathi G, Nivitha S, Sundararaj P (2019) Altitude-related changes in the phytochemical profile of essential oils extracted from Artemisia nilagirica and their nematicidal activity against Meloidogyne incognita. Ind Crops Prod 139:111472. https://doi.org/10.1016/j.indcrop.2019.111472

    Article  CAS  Google Scholar 

  • Kankam F, Sowley ENK (2016) Evaluation of neem (Azadirachta indica L.) products for the control of root-knot nematode of chilli pepper (Capsicum annum L.). Arch Phytopathol Plant Prot 49(5–6):111–119

    Article  CAS  Google Scholar 

  • Kankam F, Sowley ENK, Mohammed A (2015) Management of root-knot nematode (Meloidogyne spp.) on okra (Abelmoschus esculentus L. Moench) with aqueous sesame seed extract. Int J Agron Agric Res 6(4):24–31

    Google Scholar 

  • Kaskavalci G (2007) Effects of soil solarization and organic amendment treatments for controlling Meloidogyne incognita in tomato cultivars in Western Anatolia. Turk J Agric For 31(3):159–167

    Google Scholar 

  • Kenney E, Eleftherianos I (2016) Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int J Parasitol 46(1):13–19

    Article  Google Scholar 

  • Kerry BR, Hominick WM (2002) Biological control. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London

    Google Scholar 

  • Khan MR (2008) Current options for managing nematodes pest of crops in India. Department of Agricultural Entomology, West Bengal

    Google Scholar 

  • Khan F, Asif M, Khan A, Tariq M, Ansari T, Shariq M, Siddiqui MA (2019) Evaluation of the nematicidal potential of some botanicals against root-knot nematode, Meloidogyne incognita infected carrot: In vitro and greenhouse study. Curr Plant Biol 20:100115. https://doi.org/10.1016/j.cpb.2019.100115

    Article  Google Scholar 

  • Kim TY, Jang JY, Yu NH, Chi WJ, Bae CH, Yeo JH, Kim JC (2018) Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest Manag Sci 74(2):384–391. https://doi.org/10.1002/ps.4717

    Article  CAS  Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2013) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza 23(4):279–288

    Article  CAS  Google Scholar 

  • Kumar S, Khanna AS (2008) Role of Trichoderma harzianum and neem cake separately and in combination against root-knot nematode on tomato. Ind J Nematol 38:264–266

    Google Scholar 

  • Lal R (2005) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209

    Article  Google Scholar 

  • Laquale S, Candido V, Avato P, Argentieri MP, d’Addabbo T (2015) Essential oils as soil biofumigants for the control of the root-knot nematode Meloidogyne incognita on tomato. Ann Appl Biol 167(2):217–224

    Article  CAS  Google Scholar 

  • Lee YS, Kim KY (2016) Antagonistic potential of Bacillus pumilus L1 against root-Knot nematode, Meloidogyne arenaria. J Phytopathol 164(1):29–39

    Article  CAS  Google Scholar 

  • Li G, Zhang K, Xu J, Dong J, Liu Y (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1:212–233

    Article  CAS  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47(1):154–163

    Article  CAS  Google Scholar 

  • Li J, Yu L, Yang J, Dong L, Tian B, Yu Z, Zhang K (2010) New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol Biol 10(1):1–14

    Article  CAS  Google Scholar 

  • Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang KQ (2015) Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95

    Article  CAS  Google Scholar 

  • Liang L, Liu S, Yang J, Meng Z, Lei L, Zhang K (2011) Comparison of homology models and crystal structures of cuticle-degrading proteases from nematophagous fungi: structural basis of nematicidal activity. FASEB J 25(6):1894–1902

    Article  CAS  Google Scholar 

  • Lin F, Ye J, Wang H, Zhang A, Zhao B (2013) Host deception: predaceous fungus, Esteya vermicola, entices pine wood nematode by mimicking the scent of pine tree for nutrient. Plos One 8(8):71676

    Article  Google Scholar 

  • Lioussanne L (2010) The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8(S1):S51–S61

    Article  Google Scholar 

  • Liu K, Zhang W, Lai Y, Xiang M, Wang X, Zhang X, Liu X (2014) Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genom 15(1):1–14

    Article  Google Scholar 

  • Lopez-Llorca LV, Macia-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 51–76

    Chapter  Google Scholar 

  • Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML (2014) The complex hybrid origins of the root knot nematodes revealed through comparative genomics. Peer J 2:e356

    Article  Google Scholar 

  • Luo H, Mo M, Huang X, Li X, Zhang K (2004) Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode. Mycologia 96(6):1218–1224

    Article  Google Scholar 

  • Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahren D (2013) Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet 9(11):e1003909

    Article  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89(4):917–930

    Article  CAS  Google Scholar 

  • Molinari S, Leonetti P (2019) Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes. Plos One 14(12):e213230

    Article  CAS  Google Scholar 

  • Moosavi MR, Zare R (2012) Fungi as biological control agents of plant-parasitic nematodes. In: Merillon JM, Ramawat KG (eds) Plant Defence: Biological Control. Springer, Dordrecht, pp 67–107

    Chapter  Google Scholar 

  • Mukhtar T (2018) Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pak J Zool. https://doi.org/10.17582/journal.pjz/2018.50.4.sc15

    Article  Google Scholar 

  • Nasu ÉDGC, Formentini HM, Furlanetto C (2015) Effect of manipueira on tomato plants infected by the nematode Meloidogyne incognita. Crop Prot 78:193–197. https://doi.org/10.1016/j.cropro.2015.08.005

    Article  CAS  Google Scholar 

  • Naz I, Khan RAA, Masood T, Baig A, Siddique I, Haq S (2021) Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber. Biol Control 152:104429. https://doi.org/10.1016/j.biocontrol.2020.104429

    Article  CAS  Google Scholar 

  • Naz I, Saifullah, Palomares-Rius JE, Khan SM, Ali S, Ahmad M, Ali A, Khan A (2015) Control of southern root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood on tomato using green manure of Fumaria parviflora Lam (Fumariaceae). Crop Prot 67:121–129. https://doi.org/10.1016/j.cropro.2014.10.005

    Article  Google Scholar 

  • Nisha MS, Sheela MS (2016) Effect of fungal egg parasite, Paecilomyces lilacinus (Thom.) Samson on Meloidogyne incognita in brinjal. Ind J Nematol 46:157–159

    Google Scholar 

  • Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature 281:477–479

    Article  CAS  Google Scholar 

  • Ntalli N, Bratidou Parlapani A, Tzani K, Samara M, Boutsis G, Dimou M, Monokrousos N (2020) Thymus citriodorus (Schreb) botanical products as eco-friendly nematicides with bio-fertilizing properties. Plants 9(2):202

    Article  CAS  Google Scholar 

  • Ntalli N, Monokrousos N, Rumbos C, Kontea D, Zioga D, Argyropoulou MD, Tsiropoulos NG (2018) Greenhouse bio fumigation with Melia azedarach controls Meloidogyne spp. and enhances soil biological activity. J Pest Sci 91(1):29–40

    Article  Google Scholar 

  • Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15(6):1870–1881

    Article  CAS  Google Scholar 

  • Olabiyi TI, Ayeni BP (2016) Assessment of Azadirachta indica and Cleome viscosa liquid-formulations as bio-nematicides in the management of nematode pests of okra. Afr J Agric Res 11(6):467–471

    Article  CAS  Google Scholar 

  • Onkendi EM, Kariuki GM, Marais M, Moleleki LN (2014) The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathol 63(4):727–737

    Article  Google Scholar 

  • Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 3–20

    Chapter  Google Scholar 

  • Pettigrew WT, Meredith WR Jr, Young LD (2005) Potassium fertilization effects on cotton lint yield, yield components, and reniform nematode populations. Agron J 97(4):1245–1251

    Article  CAS  Google Scholar 

  • Prakash J, Singh K (2014) Impact of rice husk on population density and reproduction of tomato parasitised root-knot nematodes. Eur J Biotechnol Biosci 2(6):1–6

    CAS  Google Scholar 

  • Rawal S (2020) A Review on Root-Knot Nematode Infestation and Its Management Practices through Different Approaches in Tomato. Trop Agroecosyst 1(2):92–96

    Article  Google Scholar 

  • Rehman B, Ganai MA, Parihar K, Asif M, Siddiqui MA (2015) Biopotency of oil cakes against Meloidogyne incognita affecting Vigna mungo. Asian J Crop Sci 7(2):128–137

    Article  Google Scholar 

  • Robinson AF (2002) Soil and plant interactions’ impact on plant-parasitic nematode host finding and recognition. The behavioural ecology of parasites. CAB International, Wallingford, pp 89–110

    Google Scholar 

  • Rompalli R, Mehendrakar SR, Venkata PK (2016) Evaluation of potential bio-control agents on root-knot nematode Meloidogyne incognita and wilt causing fungus Fusarium oxysporum f. sp. conglutinans in vitro. Afr J Biotechnol 15(19):798–805

    Article  CAS  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  Google Scholar 

  • Shakeel A, Khan AA, Haris M (2020) Multifaceted strategies used by root-knot nematodes to parasitize plants. Phyton 89(2):205–215

    Article  Google Scholar 

  • Shaltoot A (2001) Economic loss resulting from nematode-infected vegetables and fruits. In: Disease problems caused by nematodes in horticultural farms in Egypt Proceedings of a workshop (In Arabic), Menoufia Univ, pp 43–50

    Google Scholar 

  • Sikandar A, Zhang MY, Zhu XF, Wang YY, Ahmed M, Iqbal MF, Javeed A, Xuan YH, Fan HY, Liu XY, Chen LJ, Duan YX (2019) Efficacy of Penicillium chrysogenum strain SNEF1216 against root-knot nematodes (Meloidogyne incognita) in cucumber (Cucumis sativus L.) under greenhouse conditions. Appl Ecol Environ Res 17(5):2451–12464. https://doi.org/10.15666/aeer/1705_1245112464

    Article  Google Scholar 

  • Sikora RA, Fernández E (2005) Nematodes parasites of vegetables. In: Liuc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 319–392

    Chapter  Google Scholar 

  • Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46(1):15–23

    Article  Google Scholar 

  • Silva JO, Santana MV, Freire LL, Ferreira BS, Rocha MR (2017) Bio control agents in the management of Meloidogyne incognita in tomato. Ciencia Rural 47:1–7. https://doi.org/10.1590/0103-8478cr20161053

    Article  Google Scholar 

  • Singh R, Kumar U (2015) Assessment of nematode distribution and yield losses in vegetable crops of Western Uttar Pradesh in India. Int J Sci Res 4(5):2812–2816

    Google Scholar 

  • Singh T, Patel BA (2015) Management of root-knot nematode (Meloidogyne incognita) in bottle gourd using different botanicals in pots. J Parasit Dis 39(3):441–445

    Article  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1):3–20

    Article  CAS  Google Scholar 

  • Soliman MS, El-Deriny MM, Ibrahim DS, Zakaria H, Ahmed Y (2021) Suppression of root-knot nematode Meloidogyne incognita on tomato plants using the nematode trapping fungus Arthrobotrys oligospora Fresenius. J Appl Microbiol. https://doi.org/10.1111/jam.15101

    Article  Google Scholar 

  • Szabo M, Csepregi K, Galber M, Viranyi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18‑5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63(2):121–128

    Article  Google Scholar 

  • Szabo M, Urban P, Viranyi F, Kredics L, Fekete C (2013) Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism. Biol Control 67(3):337–343

    Article  CAS  Google Scholar 

  • Teillet A, Dybal K, Kerry BR, Miller AJ, Curtis RH, Hedden P (2013) Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. Plos One 8(4):61259

    Article  Google Scholar 

  • Thoden TC, Korthals GW, Termorshuizen AJ (2011) Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management. Nematology 13(2):133–153

    Article  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35(1):67–78

    Article  CAS  Google Scholar 

  • Tosi S, Annovazzi L, Tosi I, Iadarola P, Caretta G (2002) Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia 153(3):157–162

    Article  CAS  Google Scholar 

  • Tunlid A, Johansson T, Nordbring-Hertz B (1991) Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 137(6):1231–1240

    CAS  Google Scholar 

  • Verma AC, Anwar A (1996) Assessment of yield loss due to Meloidogyne incognita in pointed gourd (Trichosanthes dioica Roxb.). Afr Asian J Nematol 6:92–93

    Google Scholar 

  • Viaene N, Coyne DL, Kerry BR (2006) Biological and cultural management. In: Perry RN, Moens M (eds) Plant nematology. CAB International, Wallingford, pp 346–369

    Chapter  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido JM (2008). The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects?. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_15

    Chapter  Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Bio control of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49(4):509–514

    Article  Google Scholar 

  • Vos CM, Tesfahun AN, Panis B, De Waele D, Elsen A (2012) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Article  Google Scholar 

  • Vos CM, Yang Y, De Coninck B, Cammue BPA (2014) Fungal (‑like) bio control organisms in tomato disease control. Biol Control 74:65–81

    Article  Google Scholar 

  • Wang CY, Wang Z, Fang ZM, Zhang DL, Gu LJ, Liu L, Sung CK (2010) Attraction of pinewood nematode to endoparasitic nematophagous fungus Esteya vermicola. Curr Microbiol 60(5):387–392

    Article  CAS  Google Scholar 

  • Wen Y, Meyer SL, MacDonald MH, Zheng L, Jing C, Chitwood DJ (2019) Nematotoxicity of Paeonia spp. extracts and Camellia oleifera tea seed cake and extracts to Heterodera glycines and Meloidogyne incognita. Plant Dis 103(9):2191–2198

    Article  CAS  Google Scholar 

  • Wesemael W, Viaene N, Moens M (2011) Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology 13(1):3–16. https://doi.org/10.1163/138855410X526831

    Article  Google Scholar 

  • Widmer TL, Ludwig JW, Abawi GS (1999) The northern root-knot nematode on carrot, lettuce, and onion in New York. New York State Agricultural Experiment Station

    Google Scholar 

  • Wieczorek K, Elashry A, Quentin M, Grundler FMW, Favery B, Seifert GJ, Bohlmann H (2014) A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes. Mol Plant Microbe Interactions 27(9):901–912

    Article  CAS  Google Scholar 

  • Xiang N, Lawrence KS, Donald PA (2018) Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: A review. J Phytopathol 166:449–458. https://doi.org/10.1111/jph.12712

    Article  Google Scholar 

  • Xu LL, Lai YL, Wang L, Liu XZ (2011) Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6. 1. Fungal Biol 115(2):97–101

    Article  CAS  Google Scholar 

  • Yang H, Zhang Q, Dai Y, Liu Q, Tang J, Bian X (2014) Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389:361–374. https://doi.org/10.1007/s11104-014-2370-8

    Article  CAS  Google Scholar 

  • Yang J, Liang L, Li J, Zhang KQ (2013) Nematicidal enzymes from microorganisms and their applications. App Microbiol Biot 97(16):7081–7095

    Article  CAS  Google Scholar 

  • Yang J, Liang L, Zhang Y, Li J, Zhang L, Ye F, Zhang KQ (2007a) Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. App Microbiol Biot 75(3):557–565

    Article  CAS  Google Scholar 

  • Yang J, Tian B, Liang L, Zhang KQ (2007b) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biot 75:21–31

    Article  CAS  Google Scholar 

  • Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7(9):e1002179

    Article  CAS  Google Scholar 

  • Yang Z, Yu Z, Lei L, Xia Z, Shao L, Zhang K, Li G (2012) Nematicidal effect of volatiles produced by Trichoderma spp. J Asia Pac Entomol 15(4):647–650

    Article  CAS  Google Scholar 

  • Yuhui B, Gao C, Yu Z (2018) Rhabdopeptides from Xenorhabdus budapestensis SN84 and their nematicidal activities against Meloidogyne incognita. J Agric Food Chem 66(15):3833–3839

    Article  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interactions 25(2):139–150

    Article  CAS  Google Scholar 

  • Zhang K‑Q, Hyde KD (2014) Nematode-trapping fungi. Springer, Dordrecht

    Book  Google Scholar 

  • Zhang S, Gan Y, Xu B (2015) Bio control potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. Appl Soil Ecol 94:21–29

    Article  Google Scholar 

  • Zhou L, Yuen G, Wang Y, Wei L, Ji G (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly obliged to the Head of Department (Botany), Aligarh Muslim University, Aligarh, India for giving valuable suggestion regarding to the work.

Author information

Authors and Affiliations

Authors

Contributions

AK suggested the idea of the manuscript. AK, GA and MH find out the literature and wrote the complete manuscript. AAK has done the final editing of the manuscript. AK and MH compile and formatted the manuscript according to journal guidelines. AK is responsible for the correspondence of manuscript. The manuscript has been read and approved by all the authors.

Corresponding author

Correspondence to Amir Khan.

Ethics declarations

Conflict of interest

A. Khan, G. Ahmad, M. Haris and A.A. Khan declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Ahmad, G., Haris, M. et al. Bio-organics Management: Novel Strategies to Manage Root-knot Nematode, Meloidogyne incognita Pest of Vegetable Crops. Gesunde Pflanzen 75, 193–209 (2023). https://doi.org/10.1007/s10343-022-00679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00679-2

Keywords

Schlüsselwörter

Navigation