Skip to main content
Log in

Nematicidal enzymes from microorganisms and their applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microorganisms can attack and kill nematodes by diverse processes such as capturing, parasitizing, and producing toxins and enzymes. Extracellular enzymes, including serine proteases, chitinases, and collagenases are shown to be important virulence factors that can degrade the main chemical constituents of the nematode cuticle and eggshell. Here, we review the structure, function, regulation, and evolution of these nematicidal enzymes and provide insights into the mechanisms of microbial infections against nematodes. We discuss the practical applications of these nematicidal enzymes in agriculture and other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    Article  PubMed  CAS  Google Scholar 

  • Åhman J, Ek B, Rask L, Tunlid A (1996) Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology 142:1605–1616

    Article  PubMed  Google Scholar 

  • Åhman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  PubMed  CAS  Google Scholar 

  • Bird AF, Self PG (1995) Chitin in Meloidogyne javanica. Fundam Appl Nematol 18:235–239

    Google Scholar 

  • Blaxter ML, Robertson WM (1998) The cuticle. In: Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CABI Publishing, Wallingford, pp 25–48

    Google Scholar 

  • Bonants PJM, Fitters PFL, Thijs H, den Belder E, Waalwijk C, Henfling JWDM (1995) A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology 141:775–784

    Article  PubMed  CAS  Google Scholar 

  • Braga FR, Araújo JV, Soares FEF, Geniêr HLA, Queiroz JH (2012) An extracellular serine protease of an isolate of Duddingtonia flagrans nematophagous fungus. Biocontrol Sci Techn 22:1131–1142

    Article  Google Scholar 

  • Chen LL, Liu LJ, Shi M, Song XY, Zheng CY, Chen XL, Zhang YZ (2009) Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett 299:135–142

    Article  PubMed  CAS  Google Scholar 

  • Cox GN, Kusch M, Edgar RS (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 90:7–17

    Article  PubMed  CAS  Google Scholar 

  • Dahiya N, Tewari R, Tiwari RP, Hoondal GS (2005) Production of an antifungal chitinase from Enterobacter sp. NRG4 and its application in protoplast production. World J Microbiol Biotechnol 21:1611–1616

    Article  CAS  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  PubMed  CAS  Google Scholar 

  • de las Mercedes Dana M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Google Scholar 

  • Dong LQ, Yang JK, Zhang KQ (2007) Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. J Appl Microbiol 103:2476–2488

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73:295–302

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Pei X, Guo S, Zhang Y, Luo Z, Liao X, Pei Y (2010) Increased virulence using engineered protease-chitin binding domain hybrid expressed in the entomopathogenic fungus Beauveria bassiana. Microb Pathog 49:376–380

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJ, Pei Y (2009) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102:155–159

    Article  PubMed  CAS  Google Scholar 

  • Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DMF (2002) Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J Biol Chem 277:25537–25544

    Article  PubMed  CAS  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Liang LM, Mi QL, Li J, Zhang KQ (2007a) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317

    Article  PubMed  CAS  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Yu ZF, Zhang KQ (2007b) Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 45:422–430

    PubMed  CAS  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Lou ZY, Mi QL, Meng ZH, Zhang KQ (2009) Crystallization and preliminary crystallographic analysis of a chitinase from Clonostachys rosea. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:386–388

    Article  PubMed  CAS  Google Scholar 

  • Godfrey T, West S (1996) Industrial enzymology, 2nd edn. Macmillan Publishers Inc., New York

    Google Scholar 

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. Mycol Progress 7:221–238

    Article  Google Scholar 

  • Gupta R, Beg QK, Khan S, Chauhan B (2002a) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60:381–395

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002b) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:5–32

    Google Scholar 

  • Hallmann J, Sikora RA (1994) Occurrence of plant parasitic nematodes and non-pathogenic species of Fusarium in tomato plants in Kenya and their role as mutualistic synergists for biological control of root-knot nematodes. Int J Pest Manag 40:321–325

    Article  Google Scholar 

  • Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93:533–543

    Article  PubMed  CAS  Google Scholar 

  • Hollis T, Monzingo AF, Bortone K, Ernst S, Cox R, Robertus JD (2000) The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis. Protein Sci 9:544–551

    Article  PubMed  CAS  Google Scholar 

  • Houston DR, Eggleston I, Synstad B, Eijsink VG, van Aalten DMF (2002) The cyclic dipeptide C1-4[cyclo-(L-Arg-D-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochem J 368:23–27

    Article  PubMed  CAS  Google Scholar 

  • Huang XW, Zhao NH, Zhang KQ (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 155:811–816

    Article  PubMed  CAS  Google Scholar 

  • Huang XW, Tian BY, Niu QH, Yang JK, Zhang L, Zhang KQ (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727

    Article  PubMed  CAS  Google Scholar 

  • Jansson HB, Friman E (1999) Infection-related surface proteins on conidia of the nematophagous fungus Drechmeria coniospora. Mycol Res 103:249–256

    Article  Google Scholar 

  • Joshi L, St Leger RJ, Bidochka MJ (1995) Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMS Microbiol Lett 125:211–217

    Article  PubMed  CAS  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Williamsa K, Molloyb MP, Nevalainen H (2003) Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein Expr Purif 32:210–220

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352

    Article  CAS  Google Scholar 

  • Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230:277–291

    Article  PubMed  CAS  Google Scholar 

  • Larsen M (2000) Prospects for controlling animal parasitic nematodes by predacious microfungi. Parasitology 120:121–131

    Article  Google Scholar 

  • Li J, Yang JK, Huang XW, Zhang KQ (2006) Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochem 41:925–929

    Article  CAS  Google Scholar 

  • Li J, Yu L, Yang JK, Dong LQ, Tian BY, Yu ZF, Liang LM, Zhang Y, Wang X, Zhang KQ (2010) New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol Biol 10:68

    Article  PubMed  CAS  Google Scholar 

  • Lian LH, Tian BY, Xiong R, Zhu MZ, Xu J, Zhang KQ (2007) Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett Appl Microbiol 45:262–269

    Google Scholar 

  • Liang LM, Meng ZH, Ye FP, Yang JK, Liu SQ, Sun Y, Guo Y, Mi QL, Huang XW, Zou CG, Rao ZH, Lou ZY, Zhang KQ (2010) The crystal structures of two cuticle-degrading proteases from nematophagous fungi and their contribution to infection against nematodes. FASEB J 24:1391–1400

    Article  PubMed  CAS  Google Scholar 

  • Liang LM, Liu SQ, Yang JK, Meng ZH, Lei LP, Zhang KQ (2011) Comparison of homology models and crystal structures of cuticle-degrading proteases from nematophagous fungi: structural basis of nematicidal activity. FASEB J 25:1894–1902

    Article  PubMed  CAS  Google Scholar 

  • Liu SQ, Liang LM, Tao Y, Yang LQ, Ji XL, Yang JK, Fu YX, Zhang KQ (2011) Structural and dynamic basis of serine proteases from nematophagous fungi for cuticle degradation, pesticides. In: Stoytcheva M (ed) The modern world–Pests control and pesticides exposure and toxicity assessment. InTech, New York, pp 333–376

    Google Scholar 

  • Lopez-Llorca LV (1990) Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can J Microbiol 36:530–537

    Article  CAS  Google Scholar 

  • Lòpez-Llorca LV, Macia-Vicente JG, Jansson H-B (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 51–76

    Google Scholar 

  • Lòpez-Llorca LV, Gomez-Vidal S, Monfort E, Larriba E, Casado-Vela J, Elortza F, Jansson HB, Salinas J, Martin-Nieto J (2010) Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genet Biol 47:342–351

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Laroche A, Huang HC (2005) Isolation and characterization of chitinases from Verticillium lecanii. Can J Microbiol 51:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Chen L, Huang Q, Zheng J, Zhou W, Peng D, Ruan L, Sun M (2013) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl Environ Microbiol 79:460–468

    Article  PubMed  CAS  Google Scholar 

  • Lýsek H, Krajcí D (1987) Penetration of ovicidal fungus Verticillium chlamydosporium through the Ascaris lumbricoides egg-shells. Folia Parasitol (Praha) 34:57–60

    Google Scholar 

  • Maclennan JD, Mandl I, Howes EL (1953) Bacterial digestion of collagen. J Clin Invest 32:1317–1322

    Article  PubMed  CAS  Google Scholar 

  • Mi QL, Yang JK, Ye FP, Gan ZW, Wu CW, Niu XM, Zou CG, Zhang KQ (2010) Cloning and overexpression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochem 45:810–814

    Article  CAS  Google Scholar 

  • Moosavi MR, Zare R (2012) Fungi as biological control agents of plant-parasitic nematodes. In: Mérillon JM, Ramawat KG (eds) Plant defence: biological control, progress in biological control, vol 12, Part 2. Springer, New York, pp 67–107

    Chapter  Google Scholar 

  • Nguyen VN, Kim YJ, Oh KT, Jung WJ, Park RD (2007) The role of chitinase from Lecanicillium antillanum B-3 in parasitism to root-knot nematode Meloidogyne incognita eggs. Biocontrol Sci Technol 17:1047–1058

    Article  Google Scholar 

  • Nguyen VN, Oh IJ, Kim YJ, Kim KY, Kim YC, Park RD (2009) Purification and characterization of chitinases from Paecilomyces variotii DG-3 parasitizing on Meloidogyne incognita eggs. J Ind Microbiol Biotechnol 36:195–203

    Article  PubMed  CAS  Google Scholar 

  • Niu QH, Huang XW, Tian BY, Yang JK, Liu J, Zhang L, Zhang KQ (2006a) Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl Microbiol Biotechnol 69:722–730

    Article  CAS  Google Scholar 

  • Niu QH, Huang XW, Zhang L, Li Y, Li J, Yang JK, Zhang KQ (2006b) A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol 185:439–448

    Article  PubMed  CAS  Google Scholar 

  • Niu QH, Huang XW, Zhang L, Xu JP, Yang DM, Wei K, Niu XM, An ZQ, Bennett JW, Zou CG, Yang JK, Zhang KQ (2010) A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc Natl Acad Sci USA 107:16631–16666

    Article  PubMed  CAS  Google Scholar 

  • Niu QH, Tian YX, Zhang L, Xu X, Niu XM, Xia ZY, Lei LP, Zhang KQ, Huang XW (2011) Overexpression of the key virulence proteases Bace16 and Bae16 in Bacillus nematocida B16 to improve its nematocidal activity. J Mol Microbiol Biotechnol 21:130–137

    Article  PubMed  CAS  Google Scholar 

  • Nordbring-Hertz B, Jansson HB, Tunlid A (2011) Nematophagous fungi. In encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev Nematol 12:77–83

    Google Scholar 

  • Papanikolau Y, Tavlas G, Vorgias CE, Petratos K (2003) De novo purification scheme and crystallization conditions yield high resolution structures of chitinase A and its complex with the inhibitor allosamidin. Acta Crystallogr D: Biol Crystallogr 59:400–403

    Article  CAS  Google Scholar 

  • Perry RN, Trett MW (1986) Ultrastructure of the egg shell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue Nématol 9:399–403

    Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    PubMed  CAS  Google Scholar 

  • Rao FV, Andersen OA, Vora KA, Demartino JA, van Aalten DM (2005) Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Chem Biol 12:973–980

    Article  PubMed  CAS  Google Scholar 

  • Rollins JA, Dickman MB (2001) pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl Environ Microbiol 67:75–81

    Article  PubMed  CAS  Google Scholar 

  • Saeki K, Ozaki K, Kobayashi T, Ito S (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103:501–508

    Article  PubMed  CAS  Google Scholar 

  • Schenck S, Chase TJ, Rosenzweig WD, Pramer D (1980) Collagenase production by nematode-trapping fungi. Appl Environ Microbiol 40:567–570

    PubMed  CAS  Google Scholar 

  • Schultz RM, Liebman MN (1997) Structure–function relationship in protein families. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations, 4th edn. Wiley–Liss, New York, pp 1–2

    Google Scholar 

  • Schuster R-P, Sikora RA, Amin N (1995) Potential of endophytic fungi for the biological control of plant parasitic nematodes. Meded Fac Landbouwk Toegep Biol Wetenschappen Univ Gent 60:1047–1052

    Google Scholar 

  • Segers R, Butt TM, Kerry BR, Peberdy JF (1994) The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology 140:2715–2723

    Article  PubMed  CAS  Google Scholar 

  • Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42

    Article  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Bioresource Technol 58:229–239

    Article  CAS  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649

    Article  PubMed  CAS  Google Scholar 

  • Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin like serine protease. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  • Soares FE, Braga FR, Araújo JV, dos Santos LW, Mozer LR, Queiróz JH (2012) In vitro activity of a serine protease from Monacrosporium thaumasium fungus against first-stage larvae of Angiostrongylus vasorum. Parasitol Res 110:2423–2437

    Article  PubMed  Google Scholar 

  • Soares FE, Braga FR, Araújo JV, Geniêr HL, Gouveia AS, Queiroz JH (2013) Nematicidal activity of three novel extracellular proteases of the nematophagous fungus Monacrosporium sinense. Parasitol Res 112:1557–1565

    Article  PubMed  Google Scholar 

  • St Leger RJ, Wang CS (2010) Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol 85:901–907

    Article  PubMed  CAS  Google Scholar 

  • Suarez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65:46–55

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Rao ZH, Liu SQ (2010) Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. J Biomol Struct Dyn 28:143–157

    Article  PubMed  CAS  Google Scholar 

  • Tian BY, Yang JK, Zhang KQ (2007a) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    Article  PubMed  CAS  Google Scholar 

  • Tian BY, Yang JK, Lian LH, Wang CY, Li N, Zhang KQ (2007b) Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl Microbiol Biotechnol 74:372–380

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    Article  PubMed  CAS  Google Scholar 

  • Tosi S, Annovazzi L, Tosi I, Iadarola P, Caretta G (2002) Collagenase production in an antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia 153:157–162

    Article  PubMed  CAS  Google Scholar 

  • Tunlid A, Jansson S (1991) Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl Environ Microbiol 57:2868–2872

    PubMed  CAS  Google Scholar 

  • Tunlid A, Rosen S, Ek B, Rask L (1994) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695

    Article  PubMed  Google Scholar 

  • Vaidya RJ, Shah IM, Vyas PR, Chhatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential antifungal biocontrol. World J Microbiol Biotechnol 1:62–69

    Google Scholar 

  • Vetrivelkalai P, Sivakumar M, Jonathan EI (2010) Biocontrol potential of endophytic bacteria on Meloidogyne incognita and its effect on plant growth in bhendi. J Biopestic 3:452–457

    Google Scholar 

  • Wang M, Yang JK, Zhang KQ (2006a) Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Can J Microbiol 52:130–139

    Article  PubMed  CAS  Google Scholar 

  • Wang RB, Yang JK, Lin C, Zhang KQ (2006b) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol 42:589–594

    PubMed  CAS  Google Scholar 

  • Wang B, Wu WP, Liu XZ (2007) Purification and characterization of a neutral serine protease with nematicidal activity from Hirsutella rhossiliensis. Mycopathologia 163:169–176

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Liu X, Wu WP, Liu X, Li S (2009) Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis. Microbiol Res 164:665–673

    Article  PubMed  CAS  Google Scholar 

  • Wang JP, Wang JX, Liu F, Pan CS (2010) Enhancing the virulence of Paecilomyces lilacinus against Meloidogyne incognita eggs by overexpression of a serine protease. Biotechnol Lett 32:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Wharton DA (1980) Nematode egg-shells. Parasitology 81:447–463

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Huang XW, Tian BY, Wang M, Niu QH, Zhang KQ (2005a) Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity. Biotechnol Lett 27:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Huang XW, Tian BY, Sun H, Duan JX, Wu WP, Zhang KQ (2005b) Characterization of an extracellular serine protease gene from the nematophagous fungus Lecanicillium psalliotae. Biotechnol Lett 27:329–1334

    Google Scholar 

  • Yang JK, Tian BY, Liang LM, Zhang KQ (2007a) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Li J, Liang LM, Tian BY, Zhang Y, Chen CM, Zhang KQ (2007b) Cloning and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys conoides. Arch Microbiol 188:167–174

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Liang LM, Zhang Y, Li J, Zhang L, Ye FP, Gan ZW, Zhang KQ (2007c) Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl Microbiol Biotechnol 75:557–565

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Ye FP, Mi QL, Tang SQ, Li J, Zhang KQ (2008) Purification and cloning of an extracellular serine protease from the nematode-trapping fungus Monacrosporium cystosporium. J Microbiol Biotechnol 18:852–858

    PubMed  CAS  Google Scholar 

  • Yang JK, Gan ZW, Lou ZY, Tao N, Mi QL, Liang LM, Sun Y, Guo Y, Huang XW, Zou CG, Rao ZH, Meng ZH, Zhang KQ (2010) Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiology 156:3566–3574

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Wang L, Ji XL, Feng Y, Li XM, Zou CG, Xu JP, Ren Y, Mi QL, Wu JL, Liu SQ, Liu Y, Huang XW, Wang HY, Niu XM, Li J, Liang LM, Luo YL, Ji KF, Zhou W, Yu ZF, Li GH, Liu YJ, Li L, Qiao M, Feng L, Zhang KQ (2011a) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7:e1002179

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Zhao XN, Liang LM, Xia ZY, Lei LP, Niu XM, Zou CG, Zhang KQ (2011b) Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Appl Microbiol Biotechnol 89:1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Yu Y, Juan L, Zhu W, Geng ZY, Jiang DW, Wang YC, Zhang KQ (2013) Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora. Arch Microbiol. 195:453–462

    Google Scholar 

  • Ye FP, Liang LM, Mi QL, Yang JK, Lou ZY, Sun Y, Guo Y, Meng ZH, Zhang KQ (2009) Preliminary crystallographic study of two cuticle-degrading proteases from the nematophagous fungi Lecanicillium psalliotae and Paecilomyces lilacinus. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:271–274

    Article  PubMed  CAS  Google Scholar 

  • Yousef GM, Kopolovic AD, Elliott MB, Diamandis EP (2003) Genomic overview of serine proteases. Biochem Biophys Res Commun 305:28–36

    Article  PubMed  CAS  Google Scholar 

  • Yu HY, Xue W, Duan JX (2012) Expression of PrD1 of Dactylellina cionopaga in Aspergillus niger. Biotechnology (Chinese) 22:38–43

    CAS  Google Scholar 

  • Zhang YJ, Liu XZ, Wang M (2008) Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis. Res Microbiol 159:462–469

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li GH, Zhang KQ (2011) A review on the research of nematophagous fungal species. Mycosystema 30:836–845

    CAS  Google Scholar 

  • Zhao ML, Mo MH, Zhang KQ (2004) Characterization of a neutral serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia 96:16–22

    Article  CAS  Google Scholar 

  • Zou CG, Tu HH, Liu XY, Tao N, Zhang KQ (2010a) PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes. Environ Microbiol 12:1868–1877

    Article  PubMed  CAS  Google Scholar 

  • Zou CG, Tao N, Liu WJ, Yang JK, Huang XW, Liu XY, Tu HH, Gan ZW, Zhang KQ (2010b) Regulation of subtilisin-like protease prC expression by nematode cuticle in the nematophagous fungus Clonostachys rosea. Environ Microbiol 12:3243–3252

    Article  PubMed  CAS  Google Scholar 

  • Zou CG, Xu YF, Liu WJ, Zhou W, Tao N, Tu HH, Huang XW, Yang JK, Zhang KQ (2010c) Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival. PLoS One 5:e13386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Jianping Xu of the Dept. Biology, McMaster University, for valuable comments and critical discussions. The research described here is jointly supported by the National Basic Research Program of China (2013CB127500), the National Natural Science Foundation of China (approved nos. 31272093, 30960229, and 31201565), the Department of Science and Technology of Yunnan Province (2009CI052), the West Light Foundation of the Chinese Academy of Sciences (to Jinkui Yang), and the China National Tobacco Corporation (110201002023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Liang, L., Li, J. et al. Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97, 7081–7095 (2013). https://doi.org/10.1007/s00253-013-5045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5045-0

Keywords

Navigation