Skip to main content

Advertisement

Log in

Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Our aim was to explore the way that root system type affects mycorrhizal growth response of plants.

Methods

An extensive meta-analysis with 943 peer-review publications was conducted to test the difference in mycorrhizal responses between taproot plants and plants with a fibrous root system.

Results

We found that taproot plants showed greater growth response (biomass, P and N uptake) to colonization by arbuscular mycorrhizal fungi (AMF) than do plant species with fibrous root systems. This response pattern was dependent on stress types, AMF identity and species richness, and particularly the type of stress (abiotic vs. biotic). Taproot plants respond more to AMF than plants with a fibrous root system; but no difference was shown under biotic stress. The interaction effect seen for AMF and biotic stress was significantly higher for plants with fibrous root system, but was not significant between taproot plants and abiotic stress. Difference in biomass response was only found for Glomeraceae and Gigasporaceae between the two types of plants, while difference was found in P uptake response for Glomeraceae and Claroideoglomeraceae. However, plants with fibrous root system showed higher growth response than taproot plants under nematode stress.

Conclusions

Taproot plants might be more dependent on mycorrhiza than plants with fibrous root system. This indicates that environmental conditions can modify the relative abundance of taproot plants and plants with fibrous root system through mycorrhizal functioning, which will regulate plant community dynamics and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson D, Berta G, Hooker JE (1994) Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators. Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Springer, pp. 89–99.

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and rhizobium-meliloti strains, and their effects on growth, N2-fixation (N15) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-born plant pathogens- An overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753

    Article  Google Scholar 

  • Bates T, Lynch J (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    Article  CAS  Google Scholar 

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus- deficient soil. Plant Soil 33:713–716

    Article  Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215

    Article  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Article  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    Article  PubMed  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas, exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    Article  CAS  Google Scholar 

  • Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949

    Article  CAS  PubMed  Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium- supplemented brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    Article  CAS  PubMed  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-Analysis. Accedemic press, New York

    Google Scholar 

  • Heijne B, Vandam D, Heil GW, Bobbink R (1996) Acidification effects on vesicular-arbuscular mycorrhizal (VAM) infection, growth and nutrient uptake of established heathland herb species. Plant Soil 179:197–206

    Article  CAS  Google Scholar 

  • Hetrick BAD, Kitt DG, Wilson GT (1988) Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Can J Bot 66:1376–1380

    Article  Google Scholar 

  • Hetrick B, Wilson GWT, Todd TC (1992) Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgrass prairie forbs. Can J Bot 70:1521–1528

    Article  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:233–235

    Article  Google Scholar 

  • Koide R, Dickie I (2002) Effects of mycorrhizal fungi on plant populations. Plant Soil 244:307–317

    Article  CAS  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li H, Smith SE, Holloway RE, Zhu Y, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    Article  CAS  PubMed  Google Scholar 

  • Maherali H (2014) Is there an association between root architecture and mycorrhizal growth response? New Phytol 204:192–200

    Article  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  CAS  PubMed  Google Scholar 

  • Morris WF, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA, Gilbert GS, Maron JL, Mitchell CE, Parker IM, Power AG, Torchin ME, Vázquez DP (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–1029

    Article  PubMed  Google Scholar 

  • Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204:171–179

    Article  PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison MJ, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006) Comparison of two methods to detect publication bias in meta-analysis. JAMA 295:676–680

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J (2000) MetaWin: statistical software for meta-analysis, version 2.0. Sinauer Associated, Sunderland

    Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot-Lond 68:135–141

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Weber CF (2009) Introducing mothur: open-source, platform-independent, community- supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schweiger P, Robson AD, Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–254

    Article  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sikes BA, CottenieK KJN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic press Inc, San Diego

    Google Scholar 

  • Sullivan WM, Jiang ZC, Hull RJ (2000) Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci 40:765–772

    Article  Google Scholar 

  • Torrey JG, Clarkson DT (1975) The development and function of roots. Academic, New York, p 618

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sander IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475:214–216

    Article  PubMed  Google Scholar 

  • Veresoglou SD, Menexes G, Rillig MC (2012) Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza 22:227–235

    Article  PubMed  Google Scholar 

  • Veresoglou SD, Powell JR, Davison J, Lekberg Y, Rillig MC (2014) The Leinster and Cobbold indices improve inferences about microbial diversity. Fungal Ecol 11:1–7

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92:1303–1313

    Article  PubMed  Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738

    Article  CAS  PubMed  Google Scholar 

  • Wu QS (2011) Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant Soil Environ 57:459–464

    CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154

    Google Scholar 

  • Yang H, Zang Y, Yuan Y, Tang J, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye CX (2007) Botany. Higher Education Press, Beijing, p 89

    Google Scholar 

  • Zhang GL, Zhang ST, Xiao LT, Wu XJ, Xiao YH, Chen LY (2013) Effects of high temperature stress on physiological characteristics of anther and pollen traits of rice at flowering stage. Acta Agron Sin 39:177–183

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Natural Science Foundation of China (No. 31400373), Natural Science Foundation of Jiangsu Province (No. BK20140689) and China Postdoctoral Science Foundation (No. 2014 M561659).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haishui Yang or Xin Chen.

Additional information

Responsible Editor: Erik J. Joner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 2062 kb)

ESM 2

(DOC 358 kb)

ESM 3

(XLS 39 kb)

ESM 4

(DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, Q., Dai, Y. et al. Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389, 361–374 (2015). https://doi.org/10.1007/s11104-014-2370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2370-8

Keywords

Navigation