Skip to main content
Log in

Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of l-ornithine

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

l-Ornithine, a non-protein amino acid, is usually extracted from hydrolyzed protein as well as produced by microbial fermentation. Here, we focus on a highly efficient whole-cell biocatalyst for the production of l-ornithine. The gene argI, encoding arginase, which catalyzes the hydrolysis of l-arginine to l-ornithine and urea, was cloned from Bacillus amyloliquefaciens B10-127 and expressed in GRAS strain Bacillus subtilis 168. The recombinant strain exhibited an arginase activity of 21.9 U/mg, which is 26.7 times that of wild B. subtilis 168. The optimal pH and temperature of the purified recombinant arginase were 10.0 and 40 °C, respectively. In addition, the recombinant arginase exhibited a strong Mn2+ preference. When using whole-cell biocatalyst-based bioconversion, a hyper l-ornithine production of 356.9 g/L was achieved with a fed-batch strategy in a 5-L reactor within 12 h. This whole-cell bioconversion study demonstrates an environmentally friendly strategy for l-ornithine production in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus Subtilis. J Bacteriol 81:741–746

    PubMed Central  CAS  PubMed  Google Scholar 

  2. DE Ash (2004) Structure and function of arginases. J Nutr 134:2760S–2764S (discussion 2765S–2767S)

    CAS  PubMed  Google Scholar 

  3. Bewley MC, Lott JS, Baker EN, Patchett ML (1996) The cloning, expression and crystallisation of a thermostable arginase. FEBS Lett 386:215–218. doi:10.1016/0014-5793(96)00459-0

    Article  CAS  PubMed  Google Scholar 

  4. Callery EM, Elinson RP (1996) Developmental regulation of the urea-cycle enzyme arginase in the direct developing frog Eleutherodactylus coqui. J Exp Zool 275:61–66. doi:10.1002/(SICI)1097-010X(19960501)275:1<61:AID-JEZ9>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  5. Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    CAS  PubMed  Google Scholar 

  6. Dakshayani KB, Velvizhi S, Subramanian P (2002) Effects of ornithine alpha-ketoglutarate on circulatory antioxidants and lipid peroxidation products in ammonium acetate treated rats. Ann Nutr Metab 46:93–96. doi:10.1159/000063076

    Article  CAS  PubMed  Google Scholar 

  7. El-Sayed AS, Shindia AA, Diab AA, Rady AM (2014) Purification and immobilization of l-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch Pharm. doi:10.1007/s12272-014-0498-y

    Google Scholar 

  8. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301. doi:10.1016/j.ymben.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  9. Goldraij A, Polacco JC (1999) Arginase is inoperative in developing soybean embryos. Plant Physiol 119:297–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gotoh T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M (1996) Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett 395:119–122

    Article  CAS  PubMed  Google Scholar 

  11. Hwang GH, Cho JY (2012) Implication of gluconate kinase activity in l-ornithine biosynthesis in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 39:1869–1874. doi:10.1007/s10295-012-1197-7

    Article  CAS  PubMed  Google Scholar 

  12. Hwang GH, Cho JY (2014) Enhancement of l-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 41:573–578. doi:10.1007/s10295-013-1398-8

    Article  CAS  PubMed  Google Scholar 

  13. Hwang JH, Hwang GH, Cho JY (2008) Effect of increased glutamate availability on l-ornithine production in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 18:704–710

    CAS  Google Scholar 

  14. Jiang LY, Zhang YY, Li Z, Liu JZ (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of l-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40:1143–1151. doi:10.1007/s10295-013-1306-2

    Article  CAS  PubMed  Google Scholar 

  15. Kanda M, Ohgishi K, Hanawa T, Saito Y (1997) Arginase of Bacillus brevis Nagano: purification, properties, and implication in gramicidin S biosynthesis. Arch Biochem Biophys 344:37–42. doi:10.1006/abbi.1997.0174

    Article  CAS  PubMed  Google Scholar 

  16. Kim SY, Lee J, Lee SY (2015) Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnol Bioeng 112:416–421. doi:10.1002/bit.25440

    Article  CAS  PubMed  Google Scholar 

  17. Lee YJ, Cho JY (2006) Genetic manipulation of a primary metabolic pathway for l-ornithine production in Escherichia coli. Biotechnol Lett 28:1849–1856. doi:10.1007/s10529-006-9163-y

    Article  CAS  PubMed  Google Scholar 

  18. Lisowska-Myjak B, Tomaszewski L, Hryckiewicz L (1978) Intestinal arginase in vertebrates and invertebrates. Comp Biochem Physiol Part B 61:545–552

    Article  CAS  Google Scholar 

  19. McGee DJ, Zabaleta J, Viator RJ, Testerman TL, Ochoa AC, Mendz GL (2004) Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur J Biochem 271:1952–1962. doi:10.1111/j.1432-1033.2004.04105.x

    Article  CAS  PubMed  Google Scholar 

  20. Morris SM Jr, Bhamidipati D, Kepka-Lenhart D (1997) Human type II arginase: sequence analysis and tissue-specific expression. Gene 193:157–161

    Article  CAS  PubMed  Google Scholar 

  21. Murray K, Rasmussen PS, Neustaedter J, Luck JM (1965) The hydrolysis of arginine. J Biol Chem 240:705–709

    CAS  PubMed  Google Scholar 

  22. Omori K, Kagami Y, Yokoyama C, Moriyama T, Matsumoto N, Masaki M, Nakamura H, Kamasaka H, Shiraishi K, Kometani T, Kuriki T, Huang ZL, Urade Y (2012) Promotion of non-rapid eye movement sleep in mice after oral administration of ornithine. Sleep Biol Rhythms 10:38–45. doi:10.1111/j.1479-8425.2011.00515.x

    Article  Google Scholar 

  23. Patchett ML, Daniel RM, Morgan HW (1991) Characterisation of arginase from the extreme thermophile Bacillus caldovelox. Biochim Biophys Acta 1077:291–298

    Article  CAS  PubMed  Google Scholar 

  24. Rivard DE (1955) Chemical preparation of l-ornithine from l-arginine. J Am Chem Soc 5:1260–1261

    Article  Google Scholar 

  25. Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198. doi:10.1016/j.jbiotec.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  26. Shi HP, Fishel RS, Efron DT, Williams JZ, Fishel MH, Barbul A (2002) Effect of supplemental ornithine on wound healing. J Surg Res 106:299–302. doi:10.1006/jsre.2002.6471

    Article  CAS  PubMed  Google Scholar 

  27. Shimotohno KW, Iida J, Takizawa N, Endo T (1994) Purification and characterization of arginine amidinohydrolase from Bacillus brevis TT02-8. Biosci Biotechnol Biochem 58:1045–1049. doi:10.1271/bbb.58.1045

    Article  CAS  PubMed  Google Scholar 

  28. Song W, Niu PQ, Chen XL, Liu LM (2014) Enzymatic production of l-ornithine from l-arginine with recombinant thermophilic arginase. J Mol Catal B-Enzym 110:1–7. doi:10.1016/j.molcatb.2014.09.005

    Article  CAS  Google Scholar 

  29. Srivastava A, Sau AK (2010) Biochemical studies on Helicobacter pylori arginase: insight into the difference in activity compared to other arginases. IUBMB Life 62:906–915. doi:10.1002/iub.401

    Article  CAS  PubMed  Google Scholar 

  30. Sugino T, Shirai T, Kajimoto Y, Kajimoto O (2008) l-Ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutr Res 28:738–743. doi:10.1016/j.nutres.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  31. Taylor AA, Stewart GR (1981) Tissue and subcellular localization of enzymes of arginine metabolism in Pisum sativum. Biochem Biophys Res Commun 101:1281–1289

    Article  CAS  PubMed  Google Scholar 

  32. Todd CD, Cooke JEK, Gifford DJ (2001) Purification and properties of Pinus taeda arginase from germinated seedlings. Plant Physiol Bioch 39:1037–1045

    Article  CAS  Google Scholar 

  33. Tokuyama E, Shibasaki T, Kawabe H, Mukai J, Okada S, Uchida T (2006) Bitterness suppression of BCAA solutions by l-ornithine. Chem Pharm Bull Tokyo 54:1288–1292

    Article  CAS  PubMed  Google Scholar 

  34. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. BBA Mol Cell Res 1694:299–310. doi:10.1016/j.bbammcr.2004.02.011

    CAS  Google Scholar 

  35. Yu JJ, Park KB, Kim SG, Oh SH (2013) Expression, purification, and biochemical properties of arginase from Bacillus subtilis 168. J Microbiol 51:222–228. doi:10.1007/s12275-013-2669-9

    Article  CAS  PubMed  Google Scholar 

  36. Zajac A, Poprzecki S, Zebrowska A, Chalimoniuk M, Langfort J (2010) Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes. J Strength Cond Res 24:1082–1090. doi:10.1519/JSC.0b013e3181d321ff

    Article  PubMed  Google Scholar 

  37. Zakalskiy AE, Zakalska OM, Rzhepetskyy YA, Potocka N, Stasyk OV, Horak D, Gonchar MV (2012) Overexpression of (His)6-tagged human arginase I in Saccharomyces cerevisiae and enzyme purification using metal affinity chromatography. Protein Expr Purif 81:63–68. doi:10.1016/j.pep.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  38. Zhan Y, Liu J, Mao P, Zhang H, Liu Q, Jiao Q (2013) Biotransformation of l-ornithine from l-arginine using whole-cell recombinant arginase. World J Microbiol Biotechnol 29:2167–2172. doi:10.1007/s11274-013-1382-5

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Zhang X, Wu C, Lu D, Guo G, Mao X, Zhang Y, Wang DC, Li D, Zou Q (2011) Expression, purification and characterization of arginase from Helicobacter pylori in its apo form. PLoS One 6:e26205. doi:10.1371/journal.pone.0026205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhang T, Guo YJ, Zhang H, Mu WM, Miao M, Jiang B (2013) Arginase from Bacillus thuringiensis SK 20.001: purification, characteristics, and implications for l-ornithine biosynthesis. Process Biochem 48:663–668

    Article  CAS  Google Scholar 

  41. Zhang X, Shen L, Li F, Meng D, Sheng J (2011) Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J Agric Food Chem 59:9351–9357. doi:10.1021/jf201812r

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Zhang J, Zhang R, Guo Y, Wu C, Mao X, Guo G, Zhang Y, Li D, Zou Q (2013) Structural, enzymatic and biochemical studies on Helicobacter pylori arginase. Int J Biochem Cell Biol 45:995–1002. doi:10.1016/j.biocel.2013.02.008

    Article  PubMed  Google Scholar 

  43. Zhang X, Zhang R, Bao T, Rao Z, Yang T, Xu M, Xu Z, Li H, Yang S (2014) The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng 23:34–41. doi:10.1016/j.ymben.2014.02.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the High-tech Research and Development Programs of China (2015AA021004), the National Natural Science Foundation of China (31300028), the Research Project of Chinese Ministry of Education (113033A), the Jiangsu Provincial National Basic Research Program (BK20130137), the Fundamental Research Funds for the Central Universities (JUSRP51306A), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (No. 111-2-06) and the Jiangsu province “Collaborative Innovation Center for Advanced Industrial Fermentation” industry development program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xu, M., Rao, Z. et al. Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of l-ornithine. J Ind Microbiol Biotechnol 42, 1427–1437 (2015). https://doi.org/10.1007/s10295-015-1672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1672-z

Keywords

Navigation