Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.
PubMed
Google Scholar
Palevsky PM, Molitoris BA, Okusa MD, Levin A, Waikar SS, Wald R, et al. Design of clinical trials in acute kidney injury: report from an NIDDK workshop on trial methodology. Clin J Am Soc Nephrol. 2012;7(5):844–50.
PubMed
Google Scholar
Siew ED, Davenport A. The growth of acute kidney injury: a rising tide or just closer attention to detail? Kidney Int. 2015;87(1):46–61.
PubMed
Google Scholar
Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordonez JD, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76(8):893–9.
CAS
PubMed
PubMed Central
Google Scholar
Lu JC, Coca SG, Patel UD, Cantley L, Parikh CR. Searching for genes that matter in acute kidney injury: a systematic review. Clin J Am Soc Nephrol. 2009;4(6):1020–31.
CAS
PubMed
PubMed Central
Google Scholar
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.
PubMed
Google Scholar
Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350–7.
CAS
PubMed
Google Scholar
Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7(7):591–607.
CAS
PubMed
Google Scholar
Dagher PC, Herget-Rosenthal S, Ruehm SG, Jo SK, Star RA, Agarwal R, et al. Newly developed techniques to study and diagnose acute renal failure. J Am Soc Nephrol. 2003;14(8):2188–98.
PubMed
Google Scholar
Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.
CAS
PubMed
Google Scholar
Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996;50(3):811–8.
CAS
PubMed
Google Scholar
Grams ME, Rabb H. The distant organ effects of acute kidney injury. Kidney Int. 2012;81(10):942–8.
PubMed
Google Scholar
Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol. 2015;2015:5.
Google Scholar
Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol. 2016;27(2):371–9.
CAS
PubMed
Google Scholar
KDIGO (2012) Clinical practice guideline for acute kidney injury. Kidney Int Suppl 2(1):1–124
Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int. 2004;66(2):496–9.
PubMed
Google Scholar
Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.
CAS
PubMed
Google Scholar
Weisheit CK, Engel DR, Kurts C. Dendritic cells and macrophages: sentinels in the kidney. Clin J Am Soc Nephrol. 2015;10(10):1841–51.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Chang J, Yao B, Niu A, Kelly E, Breeggemann MC, et al. Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int. 2015;88(6):1274–82.
CAS
PubMed
PubMed Central
Google Scholar
Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, et al. CSF-1 signaling mediates recovery from acute kidney injury. J Clin Investig. 2012;122(12):4519–32.
CAS
PubMed
PubMed Central
Google Scholar
Okusa MD, Rosner MH, Kellum JA, Ronco C. Therapeutic targets of human AKI: harmonizing human and animal AKI. J Am Soc Nephrol. 2015;2015:5.
Google Scholar
Bonventre JV. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney Int Suppl. 2014;4:39–44.
CAS
Google Scholar
Schnell D, Darmon M. Bedside Doppler ultrasound for the assessment of renal perfusion in the ICU: advantages and limitations of the available techniques. Crit Ultrasound J. 2015;7(1):24.
PubMed
Google Scholar
Faubel S, Patel NU, Lockhart ME, Cadnapaphornchai MA. Renal relevant radiology: use of ultrasonography in patients with AKI. Clin J Am Soc Nephrol. 2014;9(2):382–94.
PubMed
Google Scholar
Liu C, Wang X. Clinical utility of ultrasonographic evaluation in acute kidney injury. Transl Androl Urol. 2020;9(3):1345–55.
PubMed
PubMed Central
Google Scholar
Kaufman J, Dhakal M, Patel B, Hamburger R. Community-acquired acute renal failure. Am J Kid Dis. 1991;17(2):191–8.
CAS
PubMed
Google Scholar
Licurse A, Kim MC, Dziura J, Forman HP, Formica RN, Makarov DV, et al. Renal ultrasonography in the evaluation of acute kidney injury: developing a risk stratification framework. Arch Intern Med. 2010;170(21):1900–7.
PubMed
Google Scholar
Gamss R, Stein MW, Rispoli JM, Cohen HW, Roberts JH, Koenigsberg M, et al. What is the appropriate use of renal sonography in an inner-city population with new-onset acute kidney injury? J Ultrasound Med. 2015;34(9):1639–44.
PubMed
PubMed Central
Google Scholar
Ninet S, Schnell D, Dewitte A, Zeni F, Meziani F, Darmon M. Doppler-based renal resistive index for prediction of renal dysfunction reversibility: a systematic review and meta-analysis. J Crit Care. 2015;30(3):629–35.
PubMed
Google Scholar
Hobson C, Ruchi R, Bihorac A. Perioperative acute kidney injury: risk factors and predictive strategies. Crit Care Clin. 2017;33(2):379–96.
PubMed
PubMed Central
Google Scholar
Kararmaz A, Kemal Arslantas M, Cinel I. Renal resistive index measurement by transesophageal echocardiography: comparison with translumbar ultrasonography and relation to acute kidney injury. J Cardiothorac Vasc Anesth. 2015;29(4):875–80.
PubMed
Google Scholar
Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97(5):473–83.
CAS
PubMed
Google Scholar
Schneider A, Johnson L, Goodwin M, Schelleman A, Bellomo R. Bench-to-bedside review: contrast enhanced ultrasonography—a promising technique to assess renal perfusion in the ICU. Crit Care. 2011;15(3):157.
PubMed
PubMed Central
Google Scholar
Harrois A, Grillot N, Figueiredo S, Duranteau J. Acute kidney injury is associated with a decrease in cortical renal perfusion during septic shock. Crit Care. 2018;22(1):161.
PubMed
PubMed Central
Google Scholar
Grenier N, Gennisson JL, Cornelis F, Le Bras Y, Couzi L. Renal ultrasound elastography. Diagn Interv Imaging. 2013;94(5):545–50.
CAS
PubMed
Google Scholar
Derieppe M, Delmas Y, Gennisson JL, Deminiere C, Placier S, Tanter M, et al. Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol. 2012;22(1):243–50.
PubMed
Google Scholar
AbuRahma AF, Yacoub M. Renal imaging: duplex ultrasound, computed tomography angiography, magnetic resonance angiography, and angiography. Semin Vasc Surg. 2013;26(4):134–43.
PubMed
Google Scholar
Hou J, Fujino M, Cai S, Ding Q, Li XK. Noninvasive monitoring of mouse renal allograft rejection using micro-CT. Ann Surg Treatment Res. 2015;88(5):276–80.
Google Scholar
Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33(11):1972–80.
CAS
PubMed
Google Scholar
Katagiri D, Inoue T, Katsuma A, Masumoto S, Minami E, Hoshino T, et al. Large perinephric abscess in a patient on maintenance hemodialysis diagnosed by positron emission tomography combined with computed tomography (PET-CT). Clin Nephrol. 2010;73(2):163–6.
CAS
PubMed
Google Scholar
Katagiri D, Masumoto S, Katsuma A, Minami E, Hoshino T, Inoue T, et al. Positron emission tomography combined with computed tomography (PET-CT) as a new diagnostic tool for acute tubulointerstitial nephritis (AIN) in oliguric or haemodialysed patients. Clin Kidney J. 2010;3(2):155–9.
Google Scholar
Blackmur JP, Patel D, Kluth DC, Dhaun N. Utility of 18F-fluorodeoxyglucose positron emission tomography computed tomography in the diagnosis and management of aortitis. Circulation. 2015;132(20):1937–8.
PubMed
Google Scholar
Chopra S, Dharmaraja A, Mehta P, Colletti PM, Wassef H. FDG PET/CT images demonstrating epididymo-orchitis in a patient with HIV, acute kidney injury and known epididymo-orchitis on scrotal ultrasound. Clin Nucl Med. 2015;40(2):e171–2.
PubMed
Google Scholar
Perazella MA. Diagnosing drug-induced AIN in the hospitalized patient: a challenge for the clinician. Clin Nephrol. 2014;81(6):381–8.
PubMed
PubMed Central
Google Scholar
Chen Q, Yu J, Rush BM, Stocker SD, Tan RJ, Kim K. Ultrasound super-resolution imaging provides a noninvasive assessment of renal microvasculature changes during mouse acute kidney injury. Kidney Int. 2020;98(2):355–65.
CAS
PubMed
PubMed Central
Google Scholar
Vasquez SX, Gao F, Su F, Grijalva V, Pope J, Martin B, et al. Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS ONE. 2011;6(4):e19099.
CAS
PubMed
PubMed Central
Google Scholar
Ehling J, Bábíčková J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, et al. Quantitative micro-computed tomography imaging of vascular dysfunction in progressive kidney diseases. J Am Soc Nephrol. 2016;27(2):520–32.
CAS
PubMed
Google Scholar
Hlushchuk R, Haberthür D, Djonov V. Ex vivo microangioCT: advances in microvascular imaging. Vascul Pharmacol. 2019;112:2–7.
CAS
PubMed
Google Scholar
Kramann R, Tanaka M, Humphreys BD. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J Am Soc Nephrol. 2014;25(9):1924–31.
PubMed
PubMed Central
Google Scholar
Hueper K, Rong S, Gutberlet M, Hartung D, Mengel M, Lu X, et al. T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology. Invest Radiol. 2013;48(12):834–42.
CAS
PubMed
Google Scholar
Hueper K, Peperhove M, Rong S, Gerstenberg J, Mengel M, Meier M, et al. T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice. Eur Radiol. 2014;24(9):2252–60.
PubMed
Google Scholar
Parvin N, Charlton J, Baldelomar E, Derakhshan J. Mapping vascular and glomerular pathology in a rabbit model of neonatal acute kidney injury using MRI. Anatom Rec. 2020;2020:5.
Google Scholar
Charlton JR, Xu Y, Wu T, deRonde KA, Hughes JL, Dutta S, et al. Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney Int. 2021;99(1):173–85.
CAS
PubMed
Google Scholar
Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol. 2006;290(5):F958–74.
CAS
PubMed
Google Scholar
Takahashi T, Wang F, Quarles CC. Current MRI techniques for the assessment of renal disease. Curr Opin Nephrol Hypertens. 2015;24(3):217–23.
PubMed
PubMed Central
Google Scholar
Heyman SN, Rosenberger C, Rosen S. Acute kidney injury: lessons from experimental models. Contrib Nephrol. 2011;169:286–96.
PubMed
Google Scholar
Schneider AG, Goodwin MD, Bellomo R. Measurement of kidney perfusion in critically ill patients. Crit Care. 2013;17(2):220.
PubMed
PubMed Central
Google Scholar
Wu CJ, Bao ML, Wang Q, Wang XN, Liu XS, Shi HB, et al. Acute kidney damage induced by low- and iso-osmolar contrast media in rats: comparison study with physiologic MRI and histologic-gene examination. J Magn Reso Imaging. 2017;45(1):291–302.
Google Scholar
Privratsky JR, Wang N, Qi Y, Ren J, Morris BT, Hunting JC, et al. Dynamic contrast-enhanced MRI promotes early detection of toxin-induced acute kidney injury. Am J Physiol Renal Physiol. 2019;316(2):F351–9.
PubMed
Google Scholar
Niendorf T, Seeliger E, Cantow K, Flemming B, Waiczies S, Pohlmann A. Probing renal blood volume with magnetic resonance imaging. Acta Physiol (Oxf). 2020;228(4):e13435.
CAS
Google Scholar
Ferguson MA, Waikar SS. Established and emerging markers of kidney function. Clin Chem. 2012;58(4):680–9.
CAS
PubMed
PubMed Central
Google Scholar
Poff JA, Hecht EM, Ramchandani P. Renal imaging in patients with renal impairment. Curr Urol Rep. 2011;12(1):24–33.
PubMed
Google Scholar
Macedo E, Mehta RL. Measuring renal function in critically ill patients: tools and strategies for assessing glomerular filtration rate. Curr Opin Crit Care. 2013;19(6):560–6.
PubMed
Google Scholar
Storey P, Ji L, Li LP, Prasad PV. Sensitivity of USPIO-enhanced R2 imaging to dynamic blood volume changes in the rat kidney. J Magn Reson Imaging. 2011;33(5):1091–9.
PubMed
PubMed Central
Google Scholar
Wang F, Jiang RT, Tantawy MN, Borza DB, Takahashi K, Gore JC, et al. Repeatability and sensitivity of high resolution blood volume mapping in mouse kidney disease. J Magn Reson Imaging. 2014;39(4):866–71.
PubMed
Google Scholar
Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 2009;75(5):465–74.
CAS
PubMed
Google Scholar
Menshikh A, Scarfe L, Delgado R, Finney C, Zhu Y, Yang H, et al. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Am J Physiol Renal Physiol. 2019;317(5):F1383–97.
CAS
PubMed
PubMed Central
Google Scholar
Ittrich H, Lange C, Togel F, Zander AR, Dahnke H, Westenfelder C, et al. In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T. J Magn Reson Imaging. 2007;25(6):1179–91.
PubMed
Google Scholar
Hu L, Chen J, Yang X, Senpan A, Allen JS, Yanaba N, et al. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear (1) H/(19) F MRI and perfluorocarbon nanoparticles. Magn Reson Med. 2014;71(6):2186–96.
CAS
PubMed
Google Scholar
Moore JK, Chen J, Pan H, Gaut JP, Jain S, Wickline SA. Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy. Magn Reson Med. 2018;79(6):3144–53.
CAS
PubMed
Google Scholar
Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I. Repeatability of renal arterial spin labelling MRI in healthy subjects. Magma (New York, NY). 2012;25(2):145–53.
Google Scholar
Zhou HY, Chen TW, Zhang XM. Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int. 2016;2016:2027370.
PubMed
PubMed Central
Google Scholar
Karger N, Biederer J, Lusse S, Grimm J, Steffens J, Heller M, et al. Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging. 2000;18(6):641–7.
CAS
PubMed
Google Scholar
Lanzman RS, Wittsack HJ, Martirosian P, Zgoura P, Bilk P, Kropil P, et al. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol. 2010;20(6):1485–91.
PubMed
Google Scholar
Tewes S, Gueler F, Chen R, Gutberlet M, Jang MS, Meier M, et al. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains. PLoS ONE. 2017;12(3):e0173248.
PubMed
PubMed Central
Google Scholar
Keramida G, James JM, Prescott MC, Peters AM. Pitfalls and limitations of radionuclide renal imaging in adults. Semin Nucl Med. 2015;45(5):428–39.
PubMed
Google Scholar
Durand E, Chaumet-Riffaud P, Grenier N. Functional renal imaging: new trends in radiology and nuclear medicine. Semin Nucl Med. 2011;41(1):61–72.
PubMed
Google Scholar
Tantawy MN, Jiang R, Wang F, Takahashi K, Peterson TE, Zemel D, et al. Assessment of renal function in mice with unilateral ureteral obstruction using 99mTc-MAG3 dynamic scintigraphy. BMC Nephrol. 2012;13:168.
CAS
PubMed
Google Scholar
Roberts J, Chen B, Curtis LM, Agarwal A, Sanders PW, Zinn KR. Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2007;293(4):F1408–12.
CAS
PubMed
Google Scholar
Herrler T, Tischer A, Meyer A, Feiler S, Guba M, Nowak S, et al. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation. 2010;89(1):40–6.
PubMed
Google Scholar
Weyer K, Nielsen R, Petersen SV, Christensen EI, Rehling M, Birn H. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med. 2013;54(1):159–65.
CAS
PubMed
Google Scholar
Jouret F, Walrand S, Parreira KS, Courtoy PJ, Pauwels S, Devuyst O, et al. Single photon emission-computed tomography (SPECT) for functional investigation of the proximal tubule in conscious mice. Am J Physiol Renal Physiol. 2010;298(2):F454–60.
CAS
PubMed
Google Scholar
Sedaghat Z, Fatemikia H, Tanha K, Zahiri M, Assadi M. Scintigraphic evaluation of remote pre-conditioning protection against unilateral renal ischemia/reperfusion injury in rats: a longitudinal study. Int Urol Nephrol. 2019;51(11):2083–9.
CAS
PubMed
Google Scholar
Brezis M, Rosen S. Hypoxia of the renal medulla–its implications for disease. N Engl J Med. 1995;332(10):647–55.
CAS
PubMed
Google Scholar
O’Connor PM, Evans RG. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem? Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R723–7.
CAS
PubMed
Google Scholar
Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int. 1978;14(1):31–49.
CAS
PubMed
Google Scholar
Sugden MC, Holness MJ, Donald E, Lall H. Substrate interactions in the short- and long-term regulation of renal glucose oxidation. Metabol Clin Exper. 1999;48(6):707–15.
CAS
Google Scholar
Simon N, Hertig A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front Med. 2015;2:52.
Google Scholar
Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17(1):17–25.
CAS
PubMed
Google Scholar
Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS. 1990;87(24):9868–72.
CAS
PubMed
PubMed Central
Google Scholar
Pohlmann A, Cantow K, Huelnhagen T, Grosenick D, Dos Santos PJ, Boehmert L, et al. Experimental MRI monitoring of renal blood volume fraction variations en route to renal magnetic resonance oximetry. Tomography. 2017;3(4):188–200.
PubMed
PubMed Central
Google Scholar
Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation. 1996;94(12):3271–5.
CAS
PubMed
Google Scholar
Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am. 2008;16(4):613–25.
PubMed
PubMed Central
Google Scholar
Zhang B, Wang Y, Wang C, Wang H, Kong H, Zhang J, et al. Comparison of blood oxygen level-dependent imaging and diffusion-weighted imaging in early diagnosis of acute kidney injury in animal models. J Magn Reson Imaging. 2019;50(3):719–24.
PubMed
Google Scholar
Wang Z, Liu H, Meng H, Zhang D. Application of diffusion tensor imaging and blood oxygenation level-dependent magnetic resonance imaging to assess bilateral renal function induced by Iohexol in rabbits. BMC Nephrol. 2020;21(1):210.
CAS
PubMed
PubMed Central
Google Scholar
Hofmann L, Simon-Zoula S, Nowak A, Giger A, Vock P, Boesch C, et al. BOLD-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int. 2006;70(1):144–50.
CAS
PubMed
Google Scholar
Pohlmann A, Hentschel J, Fechner M, Hoff U, Bubalo G, Arakelyan K, et al. High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury. PLoS ONE. 2013;8(2):e57411.
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Han F, Xiao W, Wang Q, Xu Y, Chen J. Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study. BMC Nephrol. 2014;15:158.
PubMed
PubMed Central
Google Scholar
Sadowski EA, Fain SB, Alford SK, Korosec FR, Fine J, Muehrer R, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology. 2005;236(3):911–9.
PubMed
Google Scholar
Neugarten J. Renal BOLD-MRI and assessment for renal hypoxia. Kidney Int. 2012;81(7):613–4.
PubMed
Google Scholar
Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI. Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int. 2012;81(7):684–9.
CAS
PubMed
Google Scholar
Wang X, Sukstanskii AL, Yablonskiy DA. Optimization strategies for evaluation of brain hemodynamic parameters with qBOLD technique. Magn Reson Med. 2013;69(4):1034–43.
CAS
PubMed
Google Scholar
Christen T, Lemasson B, Pannetier N, Farion R, Segebarth C, Remy C, et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed. 2011;24(4):393–403.
PubMed
Google Scholar
Domsch S, Mie MB, Wenz F, Schad LR. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction. Z Med Phys. 2014;24(3):231–42.
PubMed
Google Scholar
Milman Z, Axelrod JH, Heyman SN, Nachmansson N, Abramovitch R. Assessment with unenhanced MRI techniques of renal morphology and hemodynamic changes during acute kidney injury and chronic kidney disease in mice. Am J Nephrol. 2014;39(3):268–78.
PubMed
Google Scholar
Hirakawa Y, Yoshihara T, Kamiya M, Mimura I, Fujikura D, Masuda T, et al. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement. Sci Rep. 2015;5:17838.
CAS
PubMed
PubMed Central
Google Scholar
Kong H, Wang C, Gao F, Zhang X, Yang M, Yang L, et al. Early assessment of acute kidney injury using targeted field of view diffusion-weighted imaging: an in vivo study. Magn Reson Imaging. 2019;57:1–7.
PubMed
Google Scholar
Zhang B, Dong Y, Guo B, Chen W, Ouyang F, Lian Z, et al. Application of noninvasive functional imaging to monitor the progressive changes in kidney diffusion and perfusion in contrast-induced acute kidney injury rats at 3.0 T. Abdom Radiol (NY). 2018;43(3):655–62.
PubMed
Google Scholar
Wang C, Zhang B, Wang H, Kong H, Gao F, Wang X, et al. A feasibility study of using noninvasive renal oxygenation imaging for the early assessment of ischemic acute kidney injury in an embolization model. Magn Reson Imaging. 2019;63:178–84.
PubMed
Google Scholar
Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol. 2011;22(8):1429–34.
PubMed
PubMed Central
Google Scholar
Eisenberger U, Thoeny HC, Binser T, Gugger M, Frey FJ, Boesch C, et al. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol. 2010;20(6):1374–83.
PubMed
Google Scholar
Hueper K, Gutberlet M, Rodt T, Gwinner W, Lehner F, Wacker F, et al. Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol. 2011;21(11):2427–33.
PubMed
Google Scholar
Binser T, Thoeny HC, Eisenberger U, Stemmer A, Boesch C, Vermathen P. Comparison of physiological triggering schemes for diffusion-weighted magnetic resonance imaging in kidneys. J Magn Reson Imaging. 2010;31(5):1144–50.
PubMed
Google Scholar
Liang L, Chen WB, Chan KW, Li YG, Zhang B, Liang CH, et al. Using intravoxel incoherent motion MR imaging to study the renal pathophysiological process of contrast-induced acute kidney injury in rats: Comparison with conventional DWI and arterial spin labelling. Eur Radiol. 2016;26(6):1597–605.
PubMed
Google Scholar
Cheung JS, Fan SJ, Chow AM, Zhang J, Man K, Wu EX. Diffusion tensor imaging of renal ischemia reperfusion injury in an experimental model. NMR Biomed. 2010;23(5):496–502.
PubMed
Google Scholar
Zhang ZH, Wei F, Vaziri ND, Cheng XL, Bai X, Lin RC, et al. Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci Rep. 2015;5:14472.
CAS
PubMed
PubMed Central
Google Scholar
Clatworthy MR, Kettunen MI, Hu DE, Mathews RJ, Witney TH, Kennedy BW, et al. Magnetic resonance imaging with hyperpolarized [1,4-(13)C2]fumarate allows detection of early renal acute tubular necrosis. PNAS. 2012;109(33):13374–9.
CAS
PubMed
PubMed Central
Google Scholar
Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities. J Magn Reson (San Diego, Calif: 1997). 2013;229:155–72.
CAS
Google Scholar
Wang F, Kopylov D, Zu Z, Takahashi K, Wang S, Quarles CC, et al. Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med. 2016;76(5):1531–41.
CAS
PubMed
Google Scholar
Longo DL, Busato A, Lanzardo S, Antico F, Aime S. Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med. 2013;70(3):859–64.
CAS
PubMed
Google Scholar
Irrera P, Consolino L, Cutrin JC, Zöllner FG, Longo DL. Dual assessment of kidney perfusion and pH by exploiting a dynamic CEST-MRI approach in an acute kidney ischemia-reperfusion injury murine model. NMR Biomed. 2020;33(6):e4287.
CAS
PubMed
Google Scholar
Liu J, Han Z, Chen G, Li Y, Zhang J, Xu J, et al. CEST MRI of sepsis-induced acute kidney injury. NMR Biomed. 2018;31(8):e3942.
PubMed
Google Scholar
Reuter S, Schnockel U, Edemir B, Schroter R, Kentrup D, Pavenstadt H, et al. Potential of noninvasive serial assessment of acute renal allograft rejection by 18F-FDG PET to monitor treatment efficiency. J Nucl Med. 2010;51(10):1644–52.
PubMed
Google Scholar
Pajenda S, Rasul S, Hacker M, Wagner L, Geist BK. Dynamic 2-deoxy-2[18F] fluoro-D-glucose PET/MRI in human renal allotransplant patients undergoing acute kidney injury. Sci Rep. 2020;10(1):8270.
CAS
PubMed
PubMed Central
Google Scholar
Grabner A, Kentrup D, Edemir B, Sirin Y, Pavenstadt H, Schlatter E, et al. PET with 18F-FDG-labeled T lymphocytes for diagnosis of acute rat renal allograft rejection. J Nucl Med. 2013;54(7):1147–53.
CAS
PubMed
Google Scholar
Kaissling B, Lehir M, Kriz W. Renal epithelial injury and fibrosis. Biochem Biophys Acta. 2013;1832(7):931–9.
CAS
PubMed
Google Scholar
Skrypnyk NI, Harris RC, de Caestecker MP. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice. J Vis Exp. 2013;2013:78.
Google Scholar
Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nature Med. 2010;16(5):535–43.
CAS
PubMed
Google Scholar
Katagiri D, Noiri E, Matsuura R, Harris RC. Acute kidney injury; transition to chronic kidney disease. Hum Pathobiochem. 2018;2018:269–77.
Google Scholar
Katagiri D, Hamasaki Y, Doi K, Negishi K, Sugaya T, Nangaku M, et al. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int. 2015;89(2):374–85.
Google Scholar
Togao O, Doi S, Kuro M, Masaki T, Yorioka N, Takahashi M. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology. 2010;255(3):772–80.
PubMed
PubMed Central
Google Scholar
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res. 2019;209:105–20.
PubMed
PubMed Central
Google Scholar
Leung G, Kirpalani A, Szeto SG, Deeb M, Foltz W, Simmons CA, et al. Could MRI be used to image kidney fibrosis? A review of recent advances and remaining barriers. Clin J Am Soc Nephrol. 2017;12(6):1019–28.
CAS
PubMed
PubMed Central
Google Scholar
Jiang K, Ponzo TA, Tang H, Mishra PK, Macura SI, Lerman LO. Multiparametric MRI detects longitudinal evolution of folic acid-induced nephropathy in mice. Am J Physiol Renal Physiol. 2018;315(5):F1252–60.
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Katagiri D, Li K, Takahashi K, Wang S, Nagasaka S, et al. Assessment of renal fibrosis in murine diabetic nephropathy using quantitative magnetization transfer MRI. Magn Reson Med. 2018;80(6):2655–69.
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Wang S, Zhang Y, Li K, Harris RC, Gore JC, et al. Noninvasive quantitative magnetization transfer MRI reveals tubulointerstitial fibrosis in murine kidney. NMR Biomed. 2019;32(11):e4128.
PubMed
PubMed Central
Google Scholar
Jiang K, Ferguson CM, Woollard JR, Landes VL, Krier JD, Zhu X, et al. Magnetization transfer imaging is unaffected by decreases in renal perfusion in swine. Invest Radiol. 2019;54(11):681–8.
PubMed
Google Scholar
Korsmo MJ, Ebrahimi B, Eirin A, Woollard JR, Krier JD, Crane JA, et al. Magnetic resonance elastography noninvasively detects in vivo renal medullary fibrosis secondary to swine renal artery stenosis. Invest Radiol. 2013;48(2):61–8.
PubMed
PubMed Central
Google Scholar
Hu G, Liang W, Wu M, Lai C, Mei Y, Li Y, et al. Comparison of T1 mapping and T1rho values with conventional diffusion-weighted imaging to assess fibrosis in a rat model of unilateral ureteral obstruction. Acad Radiol. 2019;26(1):22–9.
PubMed
Google Scholar
Wang F, Colvin DC, Wang S, Li H, Zu Z, Harris RC, et al. Spin-lock relaxation rate dispersion reveals spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney. Magn Reson Med. 2020;84:2074–87.
CAS
PubMed
PubMed Central
Google Scholar
Rapacchi S, Smith RX, Wang Y, Yan L, Sigalov V, Krasileva KE, et al. Towards the identification of multi-parametric quantitative MRI biomarkers in lupus nephritis. Magn Reson Imaging. 2015;33(9):1066–74.
PubMed
Google Scholar
Maril N, Margalit R, Rosen S, Heyman SN, Degani H. Detection of evolving acute tubular necrosis with renal 23Na MRI: studies in rats. Kidney Int. 2006;69(4):765–8.
CAS
PubMed
Google Scholar
Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, et al. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59(1):167–72.
CAS
PubMed
Google Scholar
Atthe BK, Babsky AM, Hopewell PN, Phillips CL, Molitoris BA, Bansal N. Early monitoring of acute tubular necrosis in the rat kidney by 23Na-MRI. Am J Physiol Renal Physiol. 2009;297(5):F1288–98.
CAS
PubMed
PubMed Central
Google Scholar
Akhtar AM, Schneider JE, Chapman SJ, Jefferson A, Digby JE, Mankia K, et al. In vivo quantification of VCAM-1 expression in renal ischemia reperfusion injury using non-invasive magnetic resonance molecular imaging. PLoS ONE. 2010;5(9):e12800.
PubMed
PubMed Central
Google Scholar
Olson ES, Ortac I, Malone C, Esener S, Mattrey R. Ultrasound detection of regional oxidative stress in deep tissues using novel enzyme loaded nanoparticles. Adv Healthc Mater. 2017;6:5.
Google Scholar
Hoyt K, Warram JM, Wang D, Ratnayaka S, Traylor A, Agarwal A. Molecular ultrasound imaging of tissue inflammation using an animal model of acute kidney injury. Mol Imaging Biol. 2015;17(6):786–92.
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18(10):1133–43.
CAS
PubMed
Google Scholar
Cheng P, Chen W, Li S, He S, Miao Q, Pu K. Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. Adv Mater. 2020;32(17):e1908530.
PubMed
Google Scholar
Perazella MA, Coca SG. Three feasible strategies to minimize kidney injury in “incipient AKI.” Nat Rev Nephrol. 2013;9(8):484–90.
CAS
PubMed
Google Scholar
Himmelfarb J, Joannidis M, Molitoris B, Schietz M, Okusa MD, Warnock D, et al. Evaluation and initial management of acute kidney injury. Clin J Am Soc Nephrol. 2008;3(4):962–7.
PubMed
PubMed Central
Google Scholar
Huen SC, Parikh CR. Molecular phenotyping of clinical AKI with novel urinary biomarkers. Am J Physiol Renal Physiol. 2015;309(5):F406–13.
CAS
PubMed
PubMed Central
Google Scholar
Endre ZH. Using biomarkers for acute kidney injury: barriers and solutions. Nephron Clin Pract. 2014;127(1–4):180–4.
CAS
PubMed
Google Scholar
Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011;22(9):1748–57.
CAS
PubMed
PubMed Central
Google Scholar
Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22(9):1737–47.
CAS
PubMed
PubMed Central
Google Scholar
Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol. 2013;8(7):1079–88.
CAS
PubMed
PubMed Central
Google Scholar
Endre ZH, Pickering JW, Walker RJ, Devarajan P, Edelstein CL, Bonventre JV, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 2011;79(10):1119–30.
CAS
PubMed
Google Scholar
Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J am Soc Nephrol. 2015;10(1):147–55.
CAS
PubMed
Google Scholar
Parikh CR, Liu C, Mor MK, Palevsky PM, Kaufman JS, Thiessen Philbrook H, et al. Kidney biomarkers of injury and repair as predictors of contrast-associated AKI: a substudy of the PRESERVE trial. Am J Kidney Dis. 2020;75(2):187–94.
PubMed
Google Scholar
Coca SG, Garg AX, Thiessen-Philbrook H, Koyner JL, Patel UD, Krumholz HM, et al. Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J Am Soc Nephrol. 2014;25(5):1063–71.
CAS
PubMed
Google Scholar
Srisawat N, Wen X, Lee M, Kong L, Elder M, Carter M, et al. Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol. 2011;6(8):1815–23.
CAS
PubMed
PubMed Central
Google Scholar
Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE. 2014;9(3):e93460.
PubMed
PubMed Central
Google Scholar
Kashani K, Kellum JA. Novel biomarkers indicating repair or progression after acute kidney injury. Curr Opin Nephrol Hypertens. 2015;24(1):21–7.
CAS
PubMed
Google Scholar
Buchanan CE, Mahmoud H, Cox EF, McCulloch T, Prestwich BL, Taal MW, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transplant. 2020;35(6):955–64.
PubMed
Google Scholar
Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, et al. Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol. 2017;8:696.
PubMed
PubMed Central
Google Scholar
Bane O, Hectors SJ, Gordic S, Kennedy P, Wagner M, Weiss A, et al. Multiparametric magnetic resonance imaging shows promising results to assess renal transplant dysfunction with fibrosis. Kidney Int. 2020;97(2):414–20.
CAS
PubMed
Google Scholar