Skip to main content
Log in

Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Aims

To determine the inter-patient variability of apparent diffusion coefficients (ADC) and concurrent micro-circulation contributions from diffusion-weighted MR imaging (DW-MRI) in renal allografts early after transplantation, and to obtain initial information on whether these measures are altered in histologically proven acute allograft rejection (AR).

Methods

DW-MRI was performed in 15 renal allograft recipients 5–19 days after transplantation. Four patients presented with AR and one with acute tubular necrosis (ATN). Total ADC (ADCT) was determined, which includes diffusion and micro-circulation contributions. Furthermore, diffusion and micro-circulation contributions were separated, yielding the “perfusion fraction” (FP), and “perfusion-free” diffusion (ADCD).

Results

Diffusion parameters in the ten allografts with stable function early after transplantation demonstrated low variabilities. Values for ADCT and ADCD were (×10−5 mm2/s) 228 ± 14 and 203 ± 9, respectively, in cortex and 226 ± 16 and 199 ± 9, respectively, in medulla. FP values were 18 ± 5% in cortex and 19 ± 5% in medulla. FP values were strongly reduced to less than 12% in cortex and medulla of renal transplants with AR and ATN. FP values correlated with creatinine clearance.

Conclusion

DW-MRI allows reliable determination of diffusion and micro-circulation contributions in renal allografts shortly after transplantation; deviations in AR indicate potential clinical utility of this method to non-invasively monitor derangements in renal allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cecka JM (2003) The OPTN/UNOS renal transplant registry 2003. Clin Transpl 1–12

  2. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  3. Prasad PV, Priatna A (1999) Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol 29:133–148

    Article  CAS  PubMed  Google Scholar 

  4. Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959

    Article  PubMed  Google Scholar 

  5. Machann J, Schlemmer HP, Schick F (2008) Technical challenges and opportunities of whole-body magnetic resonance imaging at 3T. Phys Med 24:63–70

    Article  PubMed  Google Scholar 

  6. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917

    Article  PubMed  Google Scholar 

  7. Yang D, Ye Q, Williams DS, Hitchens TK, Ho C (2004) Normal and transplanted rat kidneys: diffusion MR imaging at 7 T. Radiology 231:702–709

    Article  PubMed  Google Scholar 

  8. Thoeny HC, Zumstein D, Simon-Zoula S, Eisenberger U, De Keyzer F, Hofmann L, Vock P, Boesch C, Frey FJ, Vermathen P (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  9. Venz S, Kahl A, Hierholzer J, Gutberlet M, Windrich B, Bechstein WO, Hosten N, Frei U, Felix R (1999) Contribution of color and power Doppler sonography to the differential diagnosis of acute and chronic rejection, and tacrolimus nephrotoxicity in renal allografts. Transpl Int 12:127–134

    Article  CAS  PubMed  Google Scholar 

  10. Jani A, Polhemus C, Corrigan G, Kwon O, Myers BD, Pavlakis M (2002) Determinants of hypofiltration during acute renal allograft rejection. J Am Soc Nephrol 13:773–778

    PubMed  Google Scholar 

  11. Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, Croker BP, Demetris AJ, Drachenberg CB, Fogo AB, Furness P, Gaber LW, Gibson IW, Glotz D, Goldberg JC, Grande J, Halloran PF, Hansen HE, Hartley B, Hayry PJ, Hill CM, Hoffman EO, Hunsicker LG, Lindblad AS, Yamaguchi Y (1999) The Banff 97 working classification of renal allograft pathology. Kidney Int 55:713–723

    Article  CAS  PubMed  Google Scholar 

  12. Racusen LC, Colvin RB, Solez K, Mihatsch MJ, Halloran PF, Campbell PM, Cecka MJ, Cosyns JP, Demetris AJ, Fishbein MC, Fogo A, Furness P, Gibson IW, Glotz D, Hayry P, Hunsickern L, Kashgarian M, Kerman R, Magil AJ, Montgomery R, Morozumi K, Nickeleit V, Randhawa P, Regele H, Seron D, Seshan S, Sund S, Trpkov K (2003) Antibody-mediated rejection criteria-an addition to the Banff 97 classification of renal allograft rejection. Am J Transplant 3:708–714

    Article  PubMed  Google Scholar 

  13. Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, Halloran PF, Baldwin W, Banfi G, Collins AB, Cosio F, David DS, Drachenberg C, Einecke G, Fogo AB, Gibson IW, Glotz D, Iskandar SS, Kraus E, Lerut E, Mannon RB, Mihatsch M, Nankivell BJ, Nickeleit V, Papadimitriou JC, Randhawa P, Regele H, Renaudin K, Roberts I, Seron D, Smith RN, Valente M (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 8:753–760

    Article  CAS  PubMed  Google Scholar 

  14. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  15. Vermathen P, Eisenberger U, Boesch C, Thoeny HC (2006) Diffusion weighted imaging in native and transplanted human kidneys at 3T. Initial experience. Proc Intl Soc Magn Reson Med 14:1234

    Google Scholar 

  16. Baxter GM (2001) Ultrasound of renal transplantation. Clin Radiol 56:802–818

    Article  CAS  PubMed  Google Scholar 

  17. Hollenbeck M, Hilbert N, Meusel F, Grabensee B (1994) Increasing sensitivity and specificity of Doppler sonographic detection of renal transplant rejection with serial investigation technique. Clin Investig 72:609–615

    Article  CAS  PubMed  Google Scholar 

  18. Tublin ME, Bude RO, Platt JF (2003) Review. The resistive index in renal Doppler sonography: where do we stand? AJR Am J Roentgenol 180:885–892

    PubMed  Google Scholar 

  19. Heaf JG, Iversen J (2000) Uses and limitations of renal scintigraphy in renal transplantation monitoring. Eur J Nucl Med 27:871–879

    Article  CAS  PubMed  Google Scholar 

  20. Hricak H, Terrier F, Marotti M, Engelstad BL, Filly RA, Vincenti F, Duca RM, Bretan PN Jr, Higgins CB, Feduska N (1987) Posttransplant renal rejection: comparison of quantitative scintigraphy, US, and MR imaging. Radiology 162:685–688

    CAS  PubMed  Google Scholar 

  21. Zhang H, Prince MR (2004) Renal MR angiography. Magn Reson Imaging Clin N Am 12:487–503 vi

    Article  PubMed  Google Scholar 

  22. Sadowski EA, Fain SB, Alford SK, Korosec FR, Fine J, Muehrer R, Djamali A, Hofmann RM, Becker BN, Grist TM (2005) Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 236:911–919

    Article  PubMed  Google Scholar 

  23. Djamali A, Sadowski EA, Samaniego-Picota M, Fain SB, Muehrer RJ, Alford SK, Grist TM, Becker BN (2006) Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation 82:621–628

    Article  PubMed  Google Scholar 

  24. Agrawal G, Fain SB, Artz N, Wentland AL, Grist TM, Djamali A, Sadowski EA (2009) Blood-oxygen level dependent (BOLD) imaging in native and transplanted kidneys on 1.5T and 3.0T. Proc Intl Soc Magn Reson Med 17:2027

    Google Scholar 

  25. Muller MF, Prasad PV, Edelman RR (1998) Can the IVIM model be used for renal perfusion imaging? Eur J Radiol 26:297–303

    Article  CAS  PubMed  Google Scholar 

  26. Luciani A, Vignaud A, Cavet M, Nhieu JT, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 249:891–899

    Article  PubMed  Google Scholar 

  27. Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249:748–752

    Article  PubMed  Google Scholar 

  28. Wirestam R, Borg M, Brockstedt S, Lindgren A, Holtas S, Stahlberg F (2001) Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42:123–128

    Article  CAS  PubMed  Google Scholar 

  29. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17:1385–1393

    Article  PubMed  Google Scholar 

  30. Myers BD, Newton L (1991) Cyclosporine-induced chronic nephropathy: an obliterative microvascular renal injury. J Am Soc Nephrol 2:S45–S52

    CAS  PubMed  Google Scholar 

  31. Nilsson L, Ekberg H, Falt K, Lofberg H, Sterner G (1994) Renal arteriovenous shunting in rejecting allograft, hydronephrosis, or haemorrhagic hypotension in the rat. Nephrol Dial Transplant 9:1634–1639

    CAS  PubMed  Google Scholar 

  32. Tinckam KJ, Djurdjev O, Magil AB (2005) Glomerular monocytes predict worse outcomes after acute renal allograft rejection independent of C4d status. Kidney Int 68:1866–1874

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Swiss National Foundation 320000–113512/1 and 320000–111959/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vermathen.

Additional information

Ute Eisenberger and Harriet C. Thoeny contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenberger, U., Thoeny, H.C., Binser, T. et al. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20, 1374–1383 (2010). https://doi.org/10.1007/s00330-009-1679-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1679-9

Keywords

Navigation