Skip to main content

Advertisement

Log in

Renal Imaging in Patients with Renal Impairment

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

In patients with renal impairment, the incremental benefits from administration of contrast media for imaging studies need to be carefully assessed relative to the potential increased risks of worsening renal dysfunction and systemic adverse effects. This review provides an overview of risk and benefits of iodinated and gadolinium-based contrast agents; examines their relationships to contrast-induced nephropathy (CIN) and nephrogenic systemic fibrosis (NSF), respectively; and discusses various clinical strategies to minimize the risk of CIN and NSF. Specifically, renal imaging strategies aimed to minimize the adverse effects of contrast media as well as alternatives to iodinated and gadolinium-based contrast-enhanced renal imaging are proposed with emphasis on non–contrast-enhanced magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kopka L, Fischer U, Zoeller G, et al.: Dual-phase helical CT of the kidney: value of the corticomedullary and nephrographic phase for evaluation of renal lesions and preoperative staging of renal cell carcinoma. AJR Am J Roentgenol 1997, 169:1573–1578.

    CAS  PubMed  Google Scholar 

  2. Sun MR, Ngo L, Genega EM, et al.: Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes--correlation with pathologic findings. Radiology 2009, 250:793–802.

    Article  PubMed  Google Scholar 

  3. Rosen MA, Schnall MD: Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 2007, 13(2 Pt 2):770 s–776 s.

    Article  CAS  PubMed  Google Scholar 

  4. Bokacheva L, Rusinek H, Zhang JL, Lee VS: Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 2008, 16:597–611.

    Article  PubMed  Google Scholar 

  5. Tan KT, van Beek EJ, Brown PW, et al.: Magnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysis. Clin Radiol 2002, 57:617–624.

    Article  CAS  PubMed  Google Scholar 

  6. •• American College of Radiology Manual on Contrast Media – Version 7. 2010. This is a continually updated, authoritative clinical guide to all contrast media issues written by experts in the radiology community.

  7. Dillman JR, Ellis JH, Cohan RH, et al.: Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am J Roentgenol 2007, 189:1533–1538.

    Article  PubMed  Google Scholar 

  8. Abujudeh HH, Kosaraju VK, Kaewlai R: Acute adverse reactions to gadopentetate dimeglumine and gadobenate dimeglumine: experience with 32,659 injections. AJR Am J Roentgenol 2010, 194:430–434.

    Article  PubMed  Google Scholar 

  9. Li A, Wong CS, Wong MK, et al.: Acute adverse reactions to magnetic resonance contrast media--gadolinium chelates. Br J Radiol 2006, 79:368–371.

    Article  CAS  PubMed  Google Scholar 

  10. Morcos SK, Thomsen HS: Adverse reactions to iodinated contrast media. Eur Radiol 2001, 11:1267–1275.

    Article  CAS  PubMed  Google Scholar 

  11. Morcos SK: Review article: Acute serious and fatal reactions to contrast media: our current understanding. Br J Radiol 2005, 78:686–693.

    Article  CAS  PubMed  Google Scholar 

  12. Idée JM, Pinès E, Prigent P, Corot C: Allergy-like reactions to iodinated contrast agents. A critical analysis. Fundam Clin Pharmacol 2005, 19:263–281.

    Google Scholar 

  13. •• Katzberg RW, Lamba R: Contrast-induced nephropathy after intravenous administration: fact or fiction? Radiol Clin North Am 2009, 47:789–800. This is an excellent review of the nephrotoxic risk of iodinated contrast media in modern prospective studies.

    Article  PubMed  Google Scholar 

  14. Katzberg RW, Newhouse JH: Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology 2010, 256:21–28.

    Article  PubMed  Google Scholar 

  15. Rudnick M, Feldman H: Contrast-induced nephropathy: what are the true clinical consequences? Clin J Am Soc Nephrol 2008, 3:263–272.

    Article  CAS  PubMed  Google Scholar 

  16. Solomon R: Contrast-induced acute kidney injury (CIAKI). Radiol Clin North Am 2009, 47:783–788.

    Article  PubMed  Google Scholar 

  17. •• Newhouse JH, Kho D, Rao QA, Starren J: Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol 2008, 191:376–382. This article presents compelling data that call into question the definition of contrast-induced nephropathy related to administration of iodinated contrast.

    Article  PubMed  Google Scholar 

  18. Solomon RJ, Mehran R, Natarajan MK, et al.: Contrast-induced nephropathy and long-term adverse events: cause and effect? Clin J Am Soc Nephrol 2009, 4:1162–1169.

    Article  PubMed  Google Scholar 

  19. Herts BR, Schneider E, Obuchowski N, et al.: Probability of reduced renal function after contrast-enhanced CT: a model based on serum creatinine level, patient age, and estimated glomerular filtration rate. AJR Am J Roentgenol 2009, 193:494–500.

    Article  PubMed  Google Scholar 

  20. Thomsen HS, Morcos SK: Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT--a pooled analysis of two randomized trials. Eur Radiol 2009, 19:891–897.

    Article  PubMed  Google Scholar 

  21. Preda L, Agazzi A, Raimondi S, et al.: Effect on renal function of an iso-osmolar contrast agent in patients with monoclonal gammopathies. Eur Radiol 2010 [Epub ahead of print].

  22. Trivedi H, Foley WD: Contrast-induced nephropathy after a second contrast exposure. Ren Fail 2010, 32:796–801.

    Article  CAS  PubMed  Google Scholar 

  23. Webb JA, Stacul F, Thomsen HS, Morcos SK; Contrast Media Safety Committee Of The European Society Of Urogenital Radiology: Late adverse reactions to intravascular iodinated contrast media. Eur Radiol 2003, 13:181–184.

    Article  PubMed  Google Scholar 

  24. Hosoya T, Yamaguchi K, Akutsu T, et al.: Delayed adverse reactions to iodinated contrast media and their risk factors. Radiat Med 2000, 18:39–45.

    CAS  PubMed  Google Scholar 

  25. Gilgen-Anner Y, Heim M, Ledermann HP, Bircher AJ: Iodide mumps after contrast media imaging: a rare adverse effect to iodine. Ann Allergy Asthma Immunol 2007, 99:93–98.

    Article  PubMed  Google Scholar 

  26. Donnelly PK, Williams B, Watkin EM: Polyarthropathy--a delayed reaction to low osmolality angiographic contrast medium in patients with end stage renal disease. Eur J Radiol 1993, 17:130–132.

    Article  CAS  PubMed  Google Scholar 

  27. Karim MR, Balsam L, Rubinstein S: Permanent hearing loss with iopamidol following aortic angiography in a hemodialysis patient: a case report and review of the literature. Am J Kidney Dis 2010, 55:712–716.

    Article  PubMed  Google Scholar 

  28. Thomsen HS, Almen T, Morcos SK; Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR): Gadolinium-containing contrast media for radiographic examinations: a position paper. Eur Radiol 2002, 12:2600–2605.

    PubMed  Google Scholar 

  29. Ledneva E, Karie S, Launay-Vacher V, et al.: Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology 2009, 250:618–628.

    Article  PubMed  Google Scholar 

  30. Cowper SE, Rabach M, Girardi M: Clinical and histological findings in nephrogenic systemic fibrosis. Eur J Radiol 2008, 66:191–199.

    Article  PubMed  Google Scholar 

  31. Cowper SE, Robin HS, Steinberg SM, et al.: Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000, 356:1000–1001.

    Article  CAS  PubMed  Google Scholar 

  32. Grobner T: Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2006, 21:1104–1108.

    Article  CAS  PubMed  Google Scholar 

  33. Sadowski EA, Bennett LK, Chan MR, et al.: Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 2007, 243:148–157.

    Article  PubMed  Google Scholar 

  34. Abujudeh HH, Kaewlai R, Kagan A, et al.: Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 2009, 253:81–89.

    Article  PubMed  Google Scholar 

  35. Marckmann P, Skov L: Nephrogenic systemic fibrosis: clinical picture and treatment. Radiol Clin North Am 2009, 47:833–840.

    Article  PubMed  Google Scholar 

  36. Prince MR, Zhang H, Morris M, et al.: Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 2008, 248:807–816.

    Article  PubMed  Google Scholar 

  37. • George SJ, Webb SM, Abraham JL, Cramer SP: Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. Br J Dermatol 2010 [Epub ahead of print]. In this article is the first direct evidence of the release of gadolinium from its chelate in vivo.

    Google Scholar 

  38. • High WA, Ranville JF, Brown M, et al.: Gadolinium deposition in nephrogenic systemic fibrosis: an examination of tissue using synchrotron x-ray fluorescence spectroscopy. J Am Acad Dermatol 2010, 62:38–44. In this article, tissue correlation between amounts of deposited gadolinium and degree of fibrosis is presented.

  39. Edward M, Quinn JA, Burden AD, et al.: Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology 2010, 256:735–743.

    Article  PubMed  Google Scholar 

  40. • Rofsky NM, Sherry AD, Lenkinski RE: Nephrogenic systemic fibrosis: a chemical perspective. Radiology 2008, 247:608–612. This is an interesting discussion of the potential chemical basis of differences in NSF risk among gadolinium-based contrast agents.

    Article  PubMed  Google Scholar 

  41. Altun E, Martin DR, Wertman R, et al.: Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy--report from two U.S. universities. Radiology 2009, 253:689–696.

    Article  PubMed  Google Scholar 

  42. Martin DR, Krishnamoorthy SK, Kalb B, et al.: Decreased incidence of NSF in patients on dialysis after changing gadolinium contrast-enhanced MRI protocols. J Magn Reson Imaging 2010, 31:440–446.

    Article  PubMed  Google Scholar 

  43. Janus N, Launay-Vacher V, Karie S, et al.: Prevalence of nephrogenic systemic fibrosis in renal insufficiency patients: results of the FINEST study. Eur J Radiol 2010, 73:357–359.

    Article  PubMed  Google Scholar 

  44. Bull C: Sustained reporting of nephrogenic systemic fibrosis to FDA continues despite reports of decreased cases. 4th Annual Scientific Symptosium on Nephrogenic Systemic Fibrosis and Gadolinium-based Contrast Agents. Oral presentation. May 14, 2010.

  45. Goergen SK, Rumbold G, Compton G, Harris C: Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin. Radiology 2010, 254:261–269.

    Article  PubMed  Google Scholar 

  46. Sena BF, Stern JP, Pandharipande PV, et al.: Screening patients to assess renal function before administering gadolinium chelates: assessment of the Choyke questionnaire. AJR Am J Roentgenol 2010, 195:424–428.

    Article  PubMed  Google Scholar 

  47. • Weisbord SD, Palevsky PM: Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 2008, 3:273–280. This is a detailed review of hydration options for prevention of contrast nephropathy.

    Article  CAS  PubMed  Google Scholar 

  48. Ellis JH, Cohan RH: Prevention of contrast-induced nephropathy: an overview. Radiol Clin North Am 2009, 47:801–811.

    Article  PubMed  Google Scholar 

  49. Meier P, Ko DT, Tamura A, et al.: Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis. BMC Med 2009, 7:23.

    Article  PubMed  Google Scholar 

  50. Navaneethan SD, Singh S, Appasamy S, et al.: Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis 2009, 53:617–627.

    Article  CAS  PubMed  Google Scholar 

  51. Brar SS, Hiremath S, Dangas G, et al.: Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2009, 4:1584–1592.

    Article  CAS  PubMed  Google Scholar 

  52. Hoste EA, De Waele JJ, Gevaert SA, et al.: Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant 2010, 25:747–758.

    Article  CAS  PubMed  Google Scholar 

  53. Zoungas S, Ninomiya T, Huxley R, et al.: Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med 2009, 151:631–638.

    PubMed  Google Scholar 

  54. Kanbay M, Covic A, Coca SG, et al.: Sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of 17 randomized trials. Int Urol Nephrol 2009, 41:617–627.

    Article  CAS  PubMed  Google Scholar 

  55. Cho R, Javed N, Traub D, et al.: Oral Hydration and Alkalinization is Noninferior to Intravenous Therapy for Prevention of Contrast-Induced Nephropathy in Patients with Chronic Kidney Disease. J Interv Cardiol 2010 [Epub ahead of print].

  56. Trivedi H, Daram S, Szabo A, et al.: High-dose N-acetylcysteine for the prevention of contrast-induced nephropathy. Am J Med 2009, 122:874.e9–15.

    Google Scholar 

  57. Poletti PA, Saudan P, Platon A, et al.: I.v. N-acetylcysteine and emergency CT: use of serum creatinine and cystatin C as markers of radiocontrast nephrotoxicity. AJR Am J Roentgenol 2007, 189:687–692.

    Article  PubMed  Google Scholar 

  58. •• Goldfarb S, McCullough PA, McDermott J, Gay SB: Contrast-induced acute kidney injury: specialty-specific protocols for interventional radiology, diagnostic computed tomography radiology, and interventional cardiology. Mayo Clin Proc 2009, 84:170–179. This article provides thoughtful guidelines for prevention of contrast nephropathy differentiated by clinical specialty.

    Article  PubMed  Google Scholar 

  59. Gleeson TG, Bulugahapitiya S: Contrast-induced nephropathy. AJR Am J Roentgenol 2004, 183:1673–1689.

    PubMed  Google Scholar 

  60. Kandula P, Shah R, Singh N, et al.: Statins for prevention of contrast-induced nephropathy in patients undergoing non-emergent percutaneous coronary intervention. Nephrology (Carlton) 2010, 15:165–170.

    Article  CAS  Google Scholar 

  61. Jo SH, Koo BK, Park JS, et al.: N-acetylcysteine versus AScorbic acid for preventing contrast-Induced nephropathy in patients with renal insufficiency undergoing coronary angiography NASPI study-a prospective randomized controlled trial. Am Heart J 2009, 157:576–583.

    Article  CAS  PubMed  Google Scholar 

  62. Silberzweig JI, Chung M: Removal of gadolinium by dialysis: review of different strategies and techniques. J Magn Reson Imaging 2009, 30:1347–1349.

    Article  PubMed  Google Scholar 

  63. • Heinrich MC, Häberle L, Müller V, et al.: Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology 2009, 250:68–86. This is a review of the data regarding the renal safety of iodixanol compared to LOCM.

    Article  PubMed  Google Scholar 

  64. Morcos SK, Thomsen HS: Nephrogenic systemic fibrosis: more questions and some answers. Nephron Clin Pract 2008, 110:c24–31.

    Article  CAS  PubMed  Google Scholar 

  65. Verma SK, Mitchell DG, Yang R, et al.: Exophytic renal masses: angular interface with renal parenchyma for distinguishing benign from malignant lesions at MR imaging. Radiology 2010, 255:501–507.

    Article  PubMed  Google Scholar 

  66. Qayyum A: Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 2009, 29:1797–1810.

    Article  PubMed  Google Scholar 

  67. Zhang J, Tehrani YM, Wang L, et al.: Renal masses: characterization with diffusion-weighted MR imaging--a preliminary experience. Radiology 2008, 247:458–464.

    Article  PubMed  Google Scholar 

  68. •• Taouli B, Thakur RK, Mannelli L, et al.: Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009, 251:398–407. This article provides comparative data between DWI-MRI and CE-MRI for evaluation of renal masses on MRI.

    Article  PubMed  Google Scholar 

  69. Kim S, Jain M, Harris AB, et al.: T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 2009, 251:796–807.

    Article  PubMed  Google Scholar 

  70. Sandrasegaran K, Sundaram CP, Ramaswamy R, et al.: Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentgenol 2010, 194:438–445.

    Article  PubMed  Google Scholar 

  71. Wang H, Cheng L, Zhang X, et al.: Renal cell carcinoma: Diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 2010 epub ahead of print.

  72. Manenti G, Di Roma M, Mancino S, et al.: Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med 2008, 113:199–213.

    Article  CAS  PubMed  Google Scholar 

  73. Wilson GJ, Maki JH: Non-contrast-enhanced MR imaging of renal artery stenosis at 1.5 tesla. Magn Reson Imaging Clin N Am 2009, 17:13–27.

    Article  PubMed  Google Scholar 

  74. •• Chandarana H, Lee V: Renal functional MRI: are we ready for clinical application? AJR 2009, 192:1550–1557. This is an up-to-date appraisal of the state-of-the-art renal functional MRI techniques.

    Article  PubMed  Google Scholar 

  75. Yoshikawa T, Kawamitsu H, Mitchell DG, et al.: ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol 2006, 187:1521–1530.

    Article  PubMed  Google Scholar 

  76. Artz NS, Sadowski EA, Wentland AL, et al.: Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 2010 [Epub ahead of print].

  77. Choyke PL, Kobayashi H: Functional magnetic resonance imaging of the kidney using macromolecular contrast agents. Abdom Imaging 2006, 31:224–231.

    Article  CAS  PubMed  Google Scholar 

  78. Morell A, Ahlstrom H, Schoenberg SO, et al.: Quantitative renal cortical perfusion in human subjects with magnetic resonance imaging using iron-oxide nanoparticles: influence of T1 shortening. Acta Radiol. 2008, 49:955–962.

    Article  CAS  PubMed  Google Scholar 

  79. Neuwelt EA, Hamilton BE, Varallyay CG, et al.: Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 2009, 75:465–474.

    Article  CAS  PubMed  Google Scholar 

  80. Wilson SR, Burns PN: Microbubble-enhanced US in body imaging: what role? Radiology 2010, 257:24–39.

    Article  PubMed  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Hecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poff, J.A., Hecht, E.M. & Ramchandani, P. Renal Imaging in Patients with Renal Impairment. Curr Urol Rep 12, 24–33 (2011). https://doi.org/10.1007/s11934-010-0158-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-010-0158-9

Keywords

Navigation