Skip to main content
Log in

Covariant spacetime formalism for applications to thermo-hyperelasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The principle of material objectivity used in classical continuum mechanics states that the description of material behaviors has to be frame-invariant. Moreover, geometric considerations show that objectivity can be extended by use of a covariant principle. Covariance can be naturally expressed using a four-dimensional spacetime. We thus propose to consider a thermodynamic approach within this framework to obtain covariant constitutive models in the case of finite deformation. A four-dimensional form of the Clausius–Duhem inequality is thus derived for continuum thermomechanics applications. In this article, we are able to propose a new thermo-hyperelastic constitutive model from such a generalized thermodynamics approach with the implementation of the spacetime Lie derivative. The resulting model is then illustrated for different mechanical or thermal loadings with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Truesdell, C., Noll, W.: The Non-linear Fields Theories in Mechanics, 3rd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. J. Méc. 12, 236–274 (1973)

    MATH  Google Scholar 

  3. Valanis, K.C.: On the thermodynamic foundation of classical plasticity. Acta Mech. 9(3/4), 278–291 (1970)

    Article  MATH  Google Scholar 

  4. Lubliner, J.: A maximum-dissipation principle in generalized plasticity. Acta Mech. 52(3/4), 225–237 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Prasolov, P.P.: A strain-based relaxation theory of plasticity for anisotropic metals. 122(1/4), 65–74 (1997)

  6. Wiechert, E.: Gesetze der elastischen Nachwirkung für constante Temperatur. Ann. Phys. 286 (1893)

  7. Zener, C.M.: Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago (1948)

    MATH  Google Scholar 

  8. Oldroyd, J.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A 200, 523–541 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wineman, A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14, 300–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  MATH  Google Scholar 

  11. Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  13. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1984)

    MATH  Google Scholar 

  14. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Article  Google Scholar 

  15. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012)

    Article  MATH  Google Scholar 

  16. Hossain, M., Steinmann, P.: More hyperelastic models for rubber-like materials: Consistent tangent operator and comparative study. J. Mech. Behav. Mater. 22(1–2), 27–50 (2013)

    Article  Google Scholar 

  17. Prost-Domarsky, S.A., Szabo, B.A., Zahalak, G.I.: Large deformation analysis of non-linear elastic fluids. Comput. Struct. 64(5–6), 1281–1290 (1997)

    Article  MATH  Google Scholar 

  18. Saanouni, K., Lestriez, P., Labergere, C.: 2D adaptive FE simulations in finite thermo-elasto-viscoplasticity with ductile damage: application to orthogonal metal cutting by chip formation and breaking. Int. J. Damage Mech. 20, 23–61 (2011)

    Article  Google Scholar 

  19. Murdoch, A.I.: Objectivity in classical continuum physics: a rationale for discarding the principle of invariance under superposed rigid body motions in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, I.S.: Further remarks on Euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 17, 125–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Panicaud, B., Rouhaud, E.: A frame-indifferent model for a thermo-elastic material beyond the three-dimensional Eulerian and Lagrangian descriptions. Contin. Mech. Thermodyn. 26, 79–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Romano, G., Barretta, R., Diaco, M.: A geometric rationale for objectivity, stress rate, covariance and invariance. Contin. Mech. Thermodyn. 30, 175–194 (2018). https://doi.org/10.1007/s00161-017-0595-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Dogui, A., Sidoroff, F.: Kinematic hardening in large elastoplastic strain. Eng. Fract. Mech. 21, 685–695 (1985)

    Article  Google Scholar 

  24. Badreddine, H., Saanouni, K., Dogui, A.: On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming. Int. J. Plast. 26, 1541–1575 (2010)

    Article  MATH  Google Scholar 

  25. Frewer, M.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)

    Article  MATH  Google Scholar 

  26. Jaumann, G.: Geschlosssenes system physikalischer und chemischer differentialgesetze. Akad. Wiss. Wien Sitzber 120, 385–530 (1911)

    MATH  Google Scholar 

  27. Green, A.E., Naghdi, P.M.: A general theory of an elastic-plastic continuum. Arch. Ration. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bruhns, O.T., Meyers, A.: Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress. Mech. Res. Commun. 25(1), 59–67 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Altmeyer, G., Panicaud, B., Rouhaud, E., Wang, M., Roos, A., Kerner, R.: Viscoelasticity behavior for finite deformation, using a consistent hypoelastic model based on Rivlin materials. Cont. Mech. Thermod. (2016). https://doi.org/10.1007/s00161-016-0507-0

    Article  MathSciNet  MATH  Google Scholar 

  30. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1994)

    MATH  Google Scholar 

  31. Romano, G., Barretta, R., Diaco, M.: The geometry of nonlinear elasticity. Acta Mech. 225(11), 3199–3235 (2014). https://doi.org/10.1007/s00707-014-1113-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  33. Nemat-Nasser, S.: Plasticity, A Treatise on Finite Element Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  34. Besson, J., Cailletaud, G., Chaboche, J.L., Forest, S.: Non-linear Mechanics of Materials. Springer, New York (2009)

    MATH  Google Scholar 

  35. Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eshraghi, A., Papoulia, K.D., Jahed, H.: Eulerian framework for inelasticity based on Jaumann rate and a hyperelastic constitutive relation—Part I: Rate-form hyperelasticity. J Appl. Mech. 80, 1–11 (2013)

    Google Scholar 

  37. Rouhaud, E., Panicaud, B., Kerner, R.: Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry. Comput. Mater. Sci. 77, 120–130 (2013)

    Article  Google Scholar 

  38. De Saxce, G., Vallée, C.: Galilean Mechanics and Thermodynamics of Continua. Wiley, New York (2016)

    Book  Google Scholar 

  39. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, vol. 1. Wiley, New York (1972)

    Google Scholar 

  40. Eckart, C.: The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Am. Phys. Soc. 58, 919–924 (1940)

    MATH  Google Scholar 

  41. Havas, P.: Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity. Rev. Mod/ Phys. 36, 938–965 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  42. Grot, R.A., Eringen, A.C.: Relativistic continuum mechanics: part I—mechanics and thermodynamics. Int. J. Eng. Sci. 4, 611–638 (1966)

    Article  Google Scholar 

  43. Grot, R.A., Eringen, A.C.: Relativistic continuum mechanics: part II—electromagnetic interactions with matter. Int. J. Eng. Sci. 4, 639–670 (1966)

    Article  Google Scholar 

  44. Muller, I.: Toward relativistic thermodynamics. Arch. Ration. Mech. Anal. 34, 259–282 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  45. Maugin, G.: Champ des déformations d’un milieu continu dans l’espace-temps de Minkowski. C.R. Acad. Sci. Paris A 273, 65–68 (1971)

    MathSciNet  Google Scholar 

  46. Maugin, G.: Un modèle viscoélastique en relativité générale. C.R. Acad. Sci. Paris A 272, 1482–1484 (1971)

    MathSciNet  Google Scholar 

  47. Maugin, G.: Sur les notions de fluide visqueux, de solide élastique et de conduction de la chaleur en relativité. C.R. Acad. Sci. Paris A 276, 1027–1030 (1973)

    MathSciNet  Google Scholar 

  48. Israel, W.: Covariant fluid mechanics and thermodynamics: an introduction, Lectures delivered at CIME Session on Relativistic Fluid Dynamics (1987)

  49. Kijowski, J., Magli, G.: Unconstrained variational principle and canonical structure for relativistic elasticity. Rep. Math. Phys. 39, 99–112 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ottinger, H.C.: On the structural compatibility of a general formalism for nonequilibrium dynamics with special relativity. Phys. A: Stat. Mech. Appl. 259, 24–42 (1998)

    Article  Google Scholar 

  51. Beig, R., Schmidt, B.G.: Relativistic elastostatics: I. Bodies in rigid rotation. Class. Quantum Grav. 22, 2249–2268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Muller, I.: Entropy and energy—a universal competition. Entropy 10, 462–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yavari, A., Ozakin, A.: Covariance in linearized elasticity. Z. Angew. Math. Phys. 59, 1081–1110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Romano, G., Barretta, R.: Covariant hypo-elasticity. Eur. J. Mech. A/Solids 30, 1012–1023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yavari, A., Marsden, J.E.: Covariantization of nonlinear elasticity. Z. Angew. Math. Phys. 63, 921–927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schellstede, G., Borzeszkowski, H.H., Chrobok, T., Muschik, W.: The relation between relativistic and non-relativistic continuum thermodynamics. Gen. Relat. Gravit. 46, 1640 (2014)

    Article  MATH  Google Scholar 

  57. Muschik, W., Borzeszkowski, H.H.: Entropy production and equilibrium conditions in general-covariant continuum physics. J. Non-equilibr. Thermodyn. 40, 131–138 (2015)

    Article  Google Scholar 

  58. Bressan, A.: Relativistic Theories of Materials. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  59. Vallée, C.: Relativistic thermodynamics of continua. Int. J. Eng. Sci. 19, 589–601 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tolman, R.C.: On the use of the entropy principle in general relativity. Phys. Rev. 35, 896 (1930)

    Article  MATH  Google Scholar 

  61. Moller, C.: The Theory of Relativity. Clarendon, Oxford (1972)

    Google Scholar 

  62. Lichnerowicz, A.: Magnetohydrodynamics: Waves and Shock Waves in Curved Spacetime, p. 14. Springer, Berlin (2013)

    Google Scholar 

  63. Tsallis, C., Levy, S.V., Souza, A.M., Maynard, R.: Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature. Phys. Rev. Lett. 75, 3589 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  64. Muschik, W., Borzeszkowski, H.H.: Exploitation of the dissipation inequality in general relativistic continuum thermodynamics. Arch. Appl. Mech. 84, 1517–1531 (2014)

    Article  MATH  Google Scholar 

  65. Schellstede, G.O., Borzeszkowski, HHv., Chrobog, T., Muschik, W.: The relation between relativistic and non-relativistic continuum thermodynamics. Gen. Relat. Gravit. 46, 1640 (2014)

    Article  MATH  Google Scholar 

  66. Valanis, C.K.: Elasticity of space-time: basis of Newton’s 2nd law of motion. J. Eng. Mech. 129, 1039–1047 (2003)

    Article  Google Scholar 

  67. dell’Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46, 3150–3164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4th edn. Pergamon Press, Oxford (1975)

    MATH  Google Scholar 

  69. Schouten, J.A.: Ricci-calculus: An Introduction to Tensor Analysis and Its Geometrical Applications. Springer, New York (1954)

    Book  MATH  Google Scholar 

  70. Lamoureux-Brousse, L.: Infinitesimal deformations of finite conjugacies in non-linear classical or general relativistic theory of elasticity. Phys. D 35, 203–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  71. Israel, W., Stewart, J.M.: On transient relativistic thermodynamics and kinetic theory II. R. Soc. Lond. Proc. Ser. A 365, 43–52 (1979)

    Article  MathSciNet  Google Scholar 

  72. Stewart, J.M.: On transient relativistic thermodynamics and kinetic theory. R. Soc. Lond. Proc. Ser. A 357, 59–75 (1977)

    Article  MathSciNet  Google Scholar 

  73. Carter, B.: Conductivity with causality in relativistic hydrodynamics—the regular solution to Eckart’s problem. In: International Conference on Gravitation and Cosmology, pp. 58-65 (1988)

  74. Al Nahas, R., Charles, A., Panicaud, B., Rouhaud, E., Choucair, I., Saliya, K., Kerner, R.: Investigation on the use of a spacetime formalism for modeling and numerical simulations of heat conduction phenomena. J. Non-Equilibr. Thermodyn. 45(3), 223–246 (2020)

    Article  Google Scholar 

  75. Al Nahas, R., Petit, J., Charles, A., Rouhaud, E., Panicaud, B.: On the use of a spacetime modeling for heat equation applied to self-heating computation with comparison to experimental results. Heat Mass Transf. 57(12), 2045–2066 (2021)

    Article  Google Scholar 

  76. Wang, M., Rouhaud, E., Roos, A., Panicaud, B., Kerner, R., Ameline, O.: Anisotropic elastic behaviour using the four-dimensional formalism of differential geometry. Comput. Mater. Sci. 94, 132–141 (2014)

    Article  MATH  Google Scholar 

  77. Reis, J.M.L., Pacheco, L.J., da Costa Mattos, H.S.: Influence of the temperature and strain rate on the tensile behavior of post-consumer recycled high-density polyethylene. Polym. Test. 32, 1576–1581 (2013)

    Article  Google Scholar 

  78. Wang, M., Panicaud, B., Rouhaud, E., Kerner, R., Roos, A.: Incremental constitutive models for elastoplastic materials undergoing finite deformation by using a four-dimensional formalism. Int. J. Eng. Sci. 106, 199–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  79. Timoshenko, S.: Analysis of Bi-metal Thermostat, Scientific Paper 178. Westinghouse research laboratory, East Pittsburgh (1925)

    Google Scholar 

  80. Langtangen, H.P., Logg, A.: Solving PDEs in Python, The FEniCS Tutorial I. Springer Open (2017)

  81. Al Nahas, R.: On the use of a spacetime formalism for thermomechanical applications. PhD thesis, University of Technology of Troyes (2020)

Download references

Acknowledgements

We thank the Scientific Council of the Université de Technologie de Troyes and the Région Grand Est for their trust and financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Panicaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Nahas, R., Wang, M., Panicaud, B. et al. Covariant spacetime formalism for applications to thermo-hyperelasticity. Acta Mech 233, 2309–2334 (2022). https://doi.org/10.1007/s00707-022-03218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03218-2

Navigation